Search results
Results From The WOW.Com Content Network
The [NH 3]/[H 2] ratio has been estimated to range from 10 −7 in small dark clouds [176] up to 10 −5 in the dense core of the Orion molecular cloud complex. [177] Although a total of 18 total production routes have been proposed, [178] the principal formation mechanism for interstellar NH 3 is the reaction:
The molar mass of atoms of an element is given by the relative atomic mass of the element multiplied by the molar mass constant, M u ≈ 1.000 000 × 10 −3 kg/mol ≈ 1 g/mol. For normal samples from Earth with typical isotope composition, the atomic weight can be approximated by the standard atomic weight [ 2 ] or the conventional atomic weight.
At 15.6 °C (60.1 °F), the density of a saturated solution is 0.88 g/ml; it contains 35.6% ammonia by mass, 308 grams of ammonia per litre of solution, and has a molarity of approximately 18 mol/L. At higher temperatures, the molarity of the saturated solution decreases and the density increases. [ 8 ]
The average molecular mass is often used for larger molecules, since molecules with many atoms are often unlikely to be composed exclusively of the most abundant isotope of each element. A theoretical average molecular mass can be calculated using the standard atomic weights found in a typical periodic table. The average molecular mass of a ...
NH3, NH-3, NH 3 or NH 3 may refer to: Ammonia (chemical formula NH 3) National Highway 3 (India) National Highway 3 (India, old numbering) New Hampshire Route 3;
2 NH 3 + H 2 SO 4 → (NH 4) 2 SO 4. A mixture of ammonia gas and water vapor is introduced into a reactor that contains a saturated solution of ammonium sulfate and about 2% to 4% of free sulfuric acid at 60 °C. Concentrated sulfuric acid is added to keep the solution acidic, and to retain its level of free acid.
Ammonium is a modified form of ammonia that has an extra hydrogen atom. It is a positively charged molecular ion with the chemical formula NH + 4 or [NH 4] +.It is formed by the addition of a proton (a hydrogen nucleus) to ammonia (NH 3).
The molar mass constant, usually denoted by M u, is a physical constant defined as one twelfth of the molar mass of carbon-12: M u = M(12 C)/12. [1] The molar mass of an element or compound is its relative atomic mass (atomic weight) or relative molecular mass (molecular weight or formula weight) multiplied by the molar mass constant.