Search results
Results From The WOW.Com Content Network
If a first body of mass m A is placed at a distance r (center of mass to center of mass) from a second body of mass m B, each body is subject to an attractive force F g = Gm A m B /r 2, where G = 6.67 × 10 −11 N⋅kg −2 ⋅m 2 is the "universal gravitational constant". This is sometimes referred to as gravitational mass.
Instantons are used in nonperturbative calculations of tunneling rates. Instantons have properties similar to particles, specific examples include: Calorons, finite temperature generalization of instantons. Merons, a field configuration which is a non-self-dual solution of the Yang–Mills field equation. The instanton is believed to be ...
For example, the mass of a sample is an extensive quantity; it depends on the amount of substance. The related intensive quantity is the density which is independent of the amount. The density of water is approximately 1g/mL whether you consider a drop of water or a swimming pool, but the mass is different in the two cases.
total mass of fat divided by total body mass, multiplied by 100: biology Kt/V: Kt/V: medicine (hemodialysis and peritoneal dialysis treatment; dimensionless time) Waist–hip ratio: waist circumference divided by hip circumference: biology Waist-to-chest ratio: waist circumference divided by chest circumference: biology Waist-to-height ratio
Negative mass would possess some strange properties, such as accelerating in the direction opposite of applied force. Despite being inconsistent with the expected behavior of "normal" matter, negative mass is mathematically consistent and introduces no violation of conservation of momentum or energy .
For example, the sum of the mass of the three quarks in a nucleon is approximately 12.5 MeV/c 2, which is low compared to the mass of a nucleon (approximately 938 MeV/c 2). [27] [28] The bottom line is that most of the mass of everyday objects comes from the interaction energy of its elementary components.
The graviton is a hypothetical tensor boson proposed to be the carrier of gravitational force in some quantum theories of gravity, but no such theory has been successfully incorporated into the Standard Model, so the Standard Model neither predicts any such particle nor requires it, and no gravitational quantum particle has been indicated by experiment.
Conventional mass is defined as follows: "For a mass at 20 °C, 'conventional mass' is the mass of a reference standard of density 8,000 kg/m 3 which it balances in air with a density of 1.2 kg/m 3." The effect is a small one, 150 ppm for stainless steel mass standards, but the appropriate corrections are made during the manufacture of all ...