Search results
Results From The WOW.Com Content Network
The Silver–Meal heuristic is a production planning method in manufacturing, composed in 1973 [1] by Edward A. Silver and H.C. Meal. Its purpose is to determine production quantities to meet the requirement of operations at minimum cost. The method is an approximate heuristic for the dynamic lot-size model, perceived as computationally too ...
Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.
MATLAB (an abbreviation of "MATrix LABoratory" [18]) is a proprietary multi-paradigm programming language and numeric computing environment developed by MathWorks.MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages.
Code fragment 6: Cores of table based division. Using a 256-entry table is usually most convenient, but other sizes can be used. In small microcontrollers, using a 16-entry table to process four bits at a time gives a useful speed improvement while keeping the table small.
In computer science, a lookup table (LUT) is an array that replaces runtime computation of a mathematical function with a simpler array indexing operation, in a process termed as direct addressing. The savings in processing time can be significant, because retrieving a value from memory is often faster than carrying out an "expensive ...
The cross product operation is an example of a vector rank function because it operates on vectors, not scalars. Matrix multiplication is an example of a 2-rank function, because it operates on 2-dimensional objects (matrices). Collapse operators reduce the dimensionality of an input data array by one or more dimensions. For example, summing ...
For example, consider the ordinary differential equation ′ = + The Euler method for solving this equation uses the finite difference quotient (+) ′ to approximate the differential equation by first substituting it for u'(x) then applying a little algebra (multiplying both sides by h, and then adding u(x) to both sides) to get (+) + (() +).
The first row of coefficients at the bottom of the table gives the fifth-order accurate method, and the second row gives the fourth-order accurate method. This shows the computational time in real time used during a 3-body simulation evolved with the Runge-Kutta-Fehlberg method.