When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Residual neural network - Wikipedia

    en.wikipedia.org/wiki/Residual_neural_network

    Examples include: [17] [18] Lang and Witbrock (1988) [19] trained a fully connected feedforward network where each layer skip-connects to all subsequent layers, like the later DenseNet (2016). In this work, the residual connection was the form x ↦ F ( x ) + P ( x ) {\displaystyle x\mapsto F(x)+P(x)} , where P {\displaystyle P} is a randomly ...

  3. SqueezeNet - Wikipedia

    en.wikipedia.org/wiki/SqueezeNet

    SqueezeNet was originally described in SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size. [1] AlexNet is a deep neural network that has 240 MB of parameters, and SqueezeNet has just 5 MB of parameters.

  4. Keras - Wikipedia

    en.wikipedia.org/wiki/Keras

    Keras is an open-source library that provides a Python interface for artificial neural networks. Keras was first independent software, then integrated into the TensorFlow library, and later supporting more. "Keras 3 is a full rewrite of Keras [and can be used] as a low-level cross-framework language to develop custom components such as layers ...

  5. Comparison of deep learning software - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_deep...

    Format name Design goal Compatible with other formats Self-contained DNN Model Pre-processing and Post-processing Run-time configuration for tuning & calibration

  6. Comparison of programming languages (string functions)

    en.wikipedia.org/wiki/Comparison_of_programming...

    However such languages may implement a subset of explicit string-specific functions as well. For function that manipulate strings, modern object-oriented languages, like C# and Java have immutable strings and return a copy (in newly allocated dynamic memory), while others, like C manipulate the original string unless the programmer copies data ...

  7. Bag-of-words model - Wikipedia

    en.wikipedia.org/wiki/Bag-of-words_model

    For example, the BoW representation of "man bites dog" and "dog bites man" are the same, so any algorithm that operates with a BoW representation of text must treat them in the same way. Despite this lack of syntax or grammar, BoW representation is fast and may be sufficient for simple tasks that do not require word order.

  8. Attention (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Attention_(machine_learning)

    For example, the English phrase look it up corresponds to cherchez-le. Thus, "soft" attention weights work better than "hard" attention weights (setting one attention weight to 1, and the others to 0), as we would like the model to make a context vector consisting of a weighted sum of the hidden vectors, rather than "the best one", as there may ...

  9. LeNet - Wikipedia

    en.wikipedia.org/wiki/LeNet

    It would be calculated, for example, as: [(input width 227 - kernel width 11) / stride 4] + 1 = [(227 - 11) / 4] + 1 = 55. Since the kernel output is the same length as width, its area is 55×55.) LeNet has several common motifs of modern convolutional neural networks, such as convolutional layer, pooling layer and full connection layer.