When.com Web Search

  1. Ad

    related to: quadratic interpolation example problems with answers free pdf form

Search results

  1. Results From The WOW.Com Content Network
  2. Polynomial interpolation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_interpolation

    Polynomial interpolation also forms the basis for algorithms in numerical quadrature (Simpson's rule) and numerical ordinary differential equations (multigrid methods). In computer graphics, polynomials can be used to approximate complicated plane curves given a few specified points, for example the shapes of letters in typography.

  3. Simpson's rule - Wikipedia

    en.wikipedia.org/wiki/Simpson's_rule

    One derivation replaces the integrand () by the quadratic polynomial (i.e. parabola) () that takes the same values as () at the end points and and the midpoint +, where = /.

  4. Inverse quadratic interpolation - Wikipedia

    en.wikipedia.org/.../Inverse_quadratic_interpolation

    In numerical analysis, inverse quadratic interpolation is a root-finding algorithm, meaning that it is an algorithm for solving equations of the form f(x) = 0. The idea is to use quadratic interpolation to approximate the inverse of f. This algorithm is rarely used on its own, but it is important because it forms part of the popular Brent's method.

  5. Brent's method - Wikipedia

    en.wikipedia.org/wiki/Brent's_method

    In the sixth iteration, we cannot use inverse quadratic interpolation because b 5 = b 4. Hence, we use linear interpolation between (a 5, f(a 5)) = (−3.35724, −6.78239) and (b 5, f(b 5)) = (−2.71449, 3.93934). The result is s = −2.95064, which satisfies all the conditions. But since the iterate did not change in the previous step, we ...

  6. Muller's method - Wikipedia

    en.wikipedia.org/wiki/Muller's_method

    Muller's method is a root-finding algorithm, a numerical method for solving equations of the form f(x) = 0.It was first presented by David E. Muller in 1956.. Muller's method proceeds according to a third-order recurrence relation similar to the second-order recurrence relation of the secant method.

  7. QUICK scheme - Wikipedia

    en.wikipedia.org/wiki/Quick_scheme

    In computational fluid dynamics QUICK, which stands for Quadratic Upstream Interpolation for Convective Kinematics, is a higher-order differencing scheme that considers a three-point upstream weighted by quadratic interpolation for the cell face values.

  8. List of numerical analysis topics - Wikipedia

    en.wikipedia.org/wiki/List_of_numerical_analysis...

    Muller's method — based on quadratic interpolation at last three iterates; Sidi's generalized secant method — higher-order variants of secant method; Inverse quadratic interpolation — similar to Muller's method, but interpolates the inverse; Brent's method — combines bisection method, secant method and inverse quadratic interpolation

  9. Hermite interpolation - Wikipedia

    en.wikipedia.org/wiki/Hermite_interpolation

    The Hermite interpolation problem is a problem of linear algebra that has the coefficients of the interpolation polynomial as unknown variables and a confluent Vandermonde matrix as its matrix. [3] The general methods of linear algebra, and specific methods for confluent Vandermonde matrices are often used for computing the interpolation ...