Search results
Results From The WOW.Com Content Network
The principal curvatures at p, denoted k 1 and k 2, are the maximum and minimum values of this curvature. Here the curvature of a curve is by definition the reciprocal of the radius of the osculating circle. The curvature is taken to be positive if the curve turns in the same direction as the surface's chosen normal, and otherwise negative.
Note that changing F into –F would not change the curve defined by F(x, y) = 0, but it would change the sign of the numerator if the absolute value were omitted in the preceding formula. A point of the curve where F x = F y = 0 is a singular point, which means that the curve is not differentiable at this point, and thus that the curvature is ...
The formulas given above for T, N, and B depend on the curve being given in terms of the arclength parameter. This is a natural assumption in Euclidean geometry, because the arclength is a Euclidean invariant of the curve. In the terminology of physics, the arclength parametrization is a natural choice of gauge. However, it may be awkward to ...
For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or combinations thereof. [1] [2] [3]
Action principles are "integral" approaches rather than the "differential" approach of Newtonian mechanics.[2]: 162 The core ideas are based on energy, paths, an energy function called the Lagrangian along paths, and selection of a path according to the "action", a continuous sum or integral of the Lagrangian along the path.
The bundle TP/G is called the bundle of principal connections (Kobayashi 1957). A section Γ of dπ:TP/G→TM such that Γ : TM → TP/G is a linear morphism of vector bundles over M, can be identified with a principal connection in P. Conversely, a principal connection as defined above gives rise to such a section Γ of TP/G.
Classical mechanics is the branch of physics used to describe the motion of macroscopic objects. [1] It is the most familiar of the theories of physics. The concepts it covers, such as mass, acceleration, and force, are commonly used and known. [2]
Aggregate demand curve; Compensated demand curve; Duck curve; Engel curve; Hubbert curve; Indifference curve; J curve; Kuznets curve; Laffer curve; Lorenz curve; Phillips curve; Supply curve. Aggregate supply curve; Backward bending supply curve of labor