Search results
Results From The WOW.Com Content Network
Horner's method evaluates a polynomial using repeated bracketing: + + + + + = + (+ (+ (+ + (+)))). This method reduces the number of multiplications and additions to just Horner's method is so common that a computer instruction "multiply–accumulate operation" has been added to many computer processors, which allow doing the addition and multiplication operations in one combined step.
An evaluation function, also known as a heuristic evaluation function or static evaluation function, is a function used by game-playing computer programs to estimate the value or goodness of a position (usually at a leaf or terminal node) in a game tree. [1]
Quantile functions are used in both statistical applications and Monte Carlo methods. The quantile function is one way of prescribing a probability distribution, and it is an alternative to the probability density function (pdf) or probability mass function, the cumulative distribution function (cdf) and the characteristic function.
Gauss–Legendre quadrature is optimal in a very narrow sense for computing integrals of a function f over [−1, 1], since no other quadrature rule integrates all degree 2n − 1 polynomials exactly when using n sample points. However, this measure of accuracy is not generally a very useful one---polynomials are very simple to integrate and ...
Created Date: 8/30/2012 4:52:52 PM
Plot of the hypergeometric function 2F1(a,b; c; z) with a=2 and b=3 and c=4 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D In mathematics , the Gaussian or ordinary hypergeometric function 2 F 1 ( a , b ; c ; z ) is a special function represented by the hypergeometric series , that ...
If f is the characteristic function of the diagonal of X×Y, then integrating f along X gives the 0 function on Y, but integrating f along Y gives the function 1 on X. So, the two iterated integrals are different. This shows that Tonelli's theorem can fail for spaces that are not σ-finite no matter which product measure is chosen.
The exponent is 1101 in binary. There are four binary digits, so the loop executes four times, with values a 0 = 1, a 1 = 0, a 2 = 1, and a 3 = 1. First, initialize the result to 1 and preserve the value of b in the variable x: (=).