When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Long short-term memory - Wikipedia

    en.wikipedia.org/wiki/Long_short-term_memory

    The Long Short-Term Memory (LSTM) cell can process data sequentially and keep its hidden state through time. Long short-term memory ( LSTM ) [ 1 ] is a type of recurrent neural network (RNN) aimed at mitigating the vanishing gradient problem [ 2 ] commonly encountered by traditional RNNs.

  3. Recurrent neural network - Wikipedia

    en.wikipedia.org/wiki/Recurrent_neural_network

    The standard method for training RNN by gradient descent is the "backpropagation through time" (BPTT) algorithm, which is a special case of the general algorithm of backpropagation. A more computationally expensive online variant is called "Real-Time Recurrent Learning" or RTRL, [ 78 ] [ 79 ] which is an instance of automatic differentiation in ...

  4. Anomaly detection - Wikipedia

    en.wikipedia.org/wiki/Anomaly_detection

    Anomaly detection is crucial in the petroleum industry for monitoring critical machinery. [20] Martí et al. used a novel segmentation algorithm to analyze sensor data for real-time anomaly detection. [20] This approach helps promptly identify and address any irregularities in sensor readings, ensuring the reliability and safety of petroleum ...

  5. Time aware long short-term memory - Wikipedia

    en.wikipedia.org/wiki/Time_aware_long_short-term...

    Time Aware LSTM (T-LSTM) is a long short-term memory (LSTM) unit capable of handling irregular time intervals in longitudinal patient records. T-LSTM was developed by researchers from Michigan State University, IBM Research, and Cornell University and was first presented in the Knowledge Discovery and Data Mining (KDD) conference. [1]

  6. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    FlashAttention [79] is an algorithm that implements the transformer attention mechanism efficiently on a GPU. It is a communication-avoiding algorithm that performs matrix multiplications in blocks , such that each block fits within the cache of a GPU, and by careful management of the blocks it minimizes data copying between GPU caches (as data ...

  7. Deeplearning4j - Wikipedia

    en.wikipedia.org/wiki/Deeplearning4j

    Deeplearning4j includes implementations of term frequency–inverse document frequency , deep learning, and Mikolov's word2vec algorithm, [20] doc2vec, and GloVe, reimplemented and optimized in Java. It relies on t-distributed stochastic neighbor embedding (t-SNE) for word-cloud visualizations.

  8. DBSCAN - Wikipedia

    en.wikipedia.org/wiki/DBSCAN

    DBSCAN is one of the most commonly used and cited clustering algorithms. [2] In 2014, the algorithm was awarded the Test of Time Award (an award given to algorithms which have received substantial attention in theory and practice) at the leading data mining conference, ACM SIGKDD. [3]

  9. Mamba (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Mamba_(deep_learning...

    The model transitions from a time-invariant to a time-varying framework, which impacts both computation and efficiency. [2] [7] Mamba employs a hardware-aware algorithm that exploits GPUs, by using kernel fusion, parallel scan, and recomputation. [2]