Search results
Results From The WOW.Com Content Network
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".
If R and S are relations over X then R ∪ S = { (x, y) | xRy or xSy} is the union relation of R and S. The identity element of this operation is the empty relation. For example, ≤ is the union of < and =, and ≥ is the union of > and =. Intersection [e] If R and S are relations over X then R ∩ S = { (x, y) | xRy and xSy} is the ...
In set theory, the union (denoted by ∪) of a collection of sets is the set of all elements in the collection. [1] It is one of the fundamental operations through which sets can be combined and related to each other. A nullary union refers to a union of zero ( ) sets and it is by definition equal to the empty set.
In mathematics, the category Rel has the class of sets as objects and binary relations as morphisms. A morphism (or arrow) R : A → B in this category is a relation between the sets A and B, so R ⊆ A × B. The composition of two relations R: A → B and S: B → C is given by (a, c) ∈ S o R ⇔ for some b ∈ B, (a, b) ∈ R and (b, c) ∈ ...
isl (integer set library) is a portable C library for manipulating sets and relations of integer points bounded by linear constraints. [2] The following operations are supported: [3] intersection, union, set difference; emptiness check; convex hull (integer) affine hull; integer projection; computing the lexicographic minimum using parametric ...
A relation R on a set X is transitive if, for all x, y, z in X, whenever x R y and y R z then x R z. Examples of transitive relations include the equality relation on any set, the "less than or equal" relation on any linearly ordered set, and the relation "x was born before y" on the set of all people.
A serial relation R is an endorelation on a set U. As stated by Russell, , where the universal and existential quantifiers refer to U. In contemporary language of relations, this property defines a total relation. But a total relation may be heterogeneous. Serial relations are of historic interest.