When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Perceptron - Wikipedia

    en.wikipedia.org/wiki/Perceptron

    The perceptron algorithm is also termed the single-layer perceptron, to distinguish it from a multilayer perceptron, which is a misnomer for a more complicated neural network. As a linear classifier, the single-layer perceptron is the simplest feedforward neural network .

  3. Perceptrons (book) - Wikipedia

    en.wikipedia.org/wiki/Perceptrons_(book)

    The perceptron convergence theorem was proved for single-layer neural nets. [12] During this period, neural net research was a major approach to the brain-machine issue that had been taken by a significant number of individuals. [12]

  4. Multilayer perceptron - Wikipedia

    en.wikipedia.org/wiki/Multilayer_perceptron

    If a multilayer perceptron has a linear activation function in all neurons, that is, a linear function that maps the weighted inputs to the output of each neuron, then linear algebra shows that any number of layers can be reduced to a two-layer input-output model.

  5. Mark I Perceptron - Wikipedia

    en.wikipedia.org/wiki/Mark_I_Perceptron

    With the first version of the Mark I Perceptron as early as 1958, Rosenblatt demonstrated a simple binary classification experiment, namely distinguishing between sheets of paper marked on the right versus those marked on the left side. [5] One of the later experiments distinguished a square from a circle printed on paper.

  6. Types of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Types_of_artificial_neural...

    Each block consists of a simplified multi-layer perceptron (MLP) with a single hidden layer. The hidden layer h has logistic sigmoidal units, and the output layer has linear units. Connections between these layers are represented by weight matrix U; input-to-hidden-layer connections have weight matrix W.

  7. Spiking neural network - Wikipedia

    en.wikipedia.org/wiki/Spiking_neural_network

    The idea is that neurons in the SNN do not transmit information at each propagation cycle (as it happens with typical multi-layer perceptron networks), but rather transmit information only when a membrane potential—an intrinsic quality of the neuron related to its membrane electrical charge—reaches a specific value, called the threshold ...

  8. Delta rule - Wikipedia

    en.wikipedia.org/wiki/Delta_rule

    The perceptron uses the Heaviside step function as the activation function (), and that means that ′ does not exist at zero, and is equal to zero elsewhere, which makes the direct application of the delta rule impossible.

  9. Universal approximation theorem - Wikipedia

    en.wikipedia.org/wiki/Universal_approximation...

    In particular, this shows that a perceptron network with a single infinitely wide hidden layer can approximate arbitrary functions. Such an f {\displaystyle f} can also be approximated by a network of greater depth by using the same construction for the first layer and approximating the identity function with later layers.