Search results
Results From The WOW.Com Content Network
In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.
The equation is a result of the theory of dynamic programming which was pioneered in the 1950s by Richard Bellman and coworkers. [4] [5] [6] The connection to the Hamilton–Jacobi equation from classical physics was first drawn by Rudolf Kálmán. [7] In discrete-time problems, the analogous difference equation is usually referred to as the ...
Hamilton's principle has also been extended to quantum mechanics and quantum field theory—in particular the path integral formulation of quantum mechanics makes use of the concept—where a physical system explores all possible paths, with the phase of the probability amplitude for each path being determined by the action for the path; the ...
Using Hamilton–Jacobi theory one can derive a fourth constant of the motion known as Carter's constant. [ 2 ] The 1967 paper introducing Boyer–Lindquist coordinates [ 1 ] was a posthumous publication for Robert H. Boyer, who was killed in the 1966 University of Texas tower shooting .
It has been found that the viscosity solution is the natural solution concept to use in many applications of PDE's, including for example first order equations arising in dynamic programming (the Hamilton–Jacobi–Bellman equation), differential games (the Hamilton–Jacobi–Isaacs equation) or front evolution problems, [1] [2] as well as ...
The Hamilton–Jacobi–Bellman equation (HJB) is a partial differential equation which is central to optimal control theory. The solution of the HJB equation is the 'value function', which gives the optimal cost-to-go for a given dynamical system with an associated cost function.
In general relativity, the Hamilton–Jacobi–Einstein equation (HJEE) or Einstein–Hamilton–Jacobi equation (EHJE) is an equation in the Hamiltonian formulation of geometrodynamics in superspace, cast in the "geometrodynamics era" around the 1960s, by Asher Peres in 1962 and others. [1]
The presentation of most materials in the third edition remain unchanged compared to that of the second, though many of the old references and footnotes were removed. Sections on the relations between the action-angle coordinates and the Hamilton-Jacobi equation with the old quantum theory, wave mechanics, and geometric optics were removed ...