Search results
Results From The WOW.Com Content Network
The disjoint union space X, together with the canonical injections, can be characterized by the following universal property: If Y is a topological space, and f i : X i → Y is a continuous map for each i ∈ I, then there exists precisely one continuous map f : X → Y such that the following set of diagrams commute:
In mathematics, the disjoint union (or discriminated union) of the sets A and B is the set formed from the elements of A and B labelled (indexed) with the name of the set from which they come. So, an element belonging to both A and B appears twice in the disjoint union, with two different labels.
One common convention is to associate intersection = {: ()} with logical conjunction (and) and associate union = {: ()} with logical disjunction (or), and then transfer the precedence of these logical operators (where has precedence over ) to these set operators, thereby giving precedence over .
The simplest version of the algorithm uses the union-find data structure, which unlike other lowest common ancestor data structures can take more than constant time per operation when the number of pairs of nodes is similar in magnitude to the number of nodes. A later refinement by Gabow & Tarjan (1983) speeds the algorithm up to linear time.
where < means strictly less than in cardinality, i.e. there is an injective function from A i to B i, but not one going the other way. The union involved need not be disjoint (a non-disjoint union can't be any bigger than the disjoint version, also assuming the axiom of choice). In this formulation, Kőnig's theorem is equivalent to the axiom ...
The pushout of f and g is the disjoint union of X and Y, where elements sharing a common preimage (in Z) are identified, together with the morphisms i 1, i 2 from X and Y, i.e. = / where ~ is the finest equivalence relation (cf. also this) such that f(z) ~ g(z) for all z in Z.
The continuous maps h : X ∪ f Y → Z are in 1-1 correspondence with the pairs of continuous maps h X : X → Z and h Y : Y → Z that satisfy h X (f(a))=h Y (a) for all a in A. In the case where A is a closed subspace of Y one can show that the map X → X ∪ f Y is a closed embedding and (Y − A) → X ∪ f Y is an open embedding.
In graph theory, a branch of mathematics, the disjoint union of graphs is an operation that combines two or more graphs to form a larger graph. It is analogous to the disjoint union of sets , and is constructed by making the vertex set of the result be the disjoint union of the vertex sets of the given graphs, and by making the edge set of the ...