When.com Web Search

  1. Ads

    related to: how to apply linear down gradient fill excel

Search results

  1. Results From The WOW.Com Content Network
  2. Linear interpolation - Wikipedia

    en.wikipedia.org/wiki/Linear_interpolation

    A description of linear interpolation can be found in the ancient Chinese mathematical text called The Nine Chapters on the Mathematical Art (九章算術), [1] dated from 200 BC to AD 100 and the Almagest (2nd century AD) by Ptolemy. The basic operation of linear interpolation between two values is commonly used in computer graphics.

  3. Gradient descent - Wikipedia

    en.wikipedia.org/wiki/Gradient_descent

    Gradient descent can also be used to solve a system of nonlinear equations. Below is an example that shows how to use the gradient descent to solve for three unknown variables, x 1, x 2, and x 3. This example shows one iteration of the gradient descent. Consider the nonlinear system of equations

  4. Linear least squares - Wikipedia

    en.wikipedia.org/wiki/Linear_least_squares

    Mathematically, linear least squares is the problem of approximately solving an overdetermined system of linear equations A x = b, where b is not an element of the column space of the matrix A. The approximate solution is realized as an exact solution to A x = b', where b' is the projection of b onto the column space of A. The best ...

  5. Loss function - Wikipedia

    en.wikipedia.org/wiki/Loss_function

    In many applications, objective functions, including loss functions as a particular case, are determined by the problem formulation. In other situations, the decision maker’s preference must be elicited and represented by a scalar-valued function (called also utility function) in a form suitable for optimization — the problem that Ragnar Frisch has highlighted in his Nobel Prize lecture. [4]

  6. Multivariate interpolation - Wikipedia

    en.wikipedia.org/wiki/Multivariate_interpolation

    Triangulated irregular network-based linear interpolation (a type of piecewise linear function) n-simplex (e.g. tetrahedron) interpolation (see barycentric coordinate system) Inverse distance weighting; ABOS - approximation based on smoothing; Kriging; Gradient-enhanced kriging (GEK) Thin plate spline

  7. Gradient - Wikipedia

    en.wikipedia.org/wiki/Gradient

    The gradient of the function f(x,y) = −(cos 2 x + cos 2 y) 2 depicted as a projected vector field on the bottom plane. The gradient (or gradient vector field) of a scalar function f(x 1, x 2, x 3, …, x n) is denoted ∇f or ∇ → f where ∇ denotes the vector differential operator, del.

  8. Conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_method

    The conjugate gradient method can be applied to an arbitrary n-by-m matrix by applying it to normal equations A T A and right-hand side vector A T b, since A T A is a symmetric positive-semidefinite matrix for any A. The result is conjugate gradient on the normal equations (CGN or CGNR). A T Ax = A T b

  9. Smoothing - Wikipedia

    en.wikipedia.org/wiki/Smoothing

    In the case that the smoothed values can be written as a linear transformation of the observed values, the smoothing operation is known as a linear smoother; the matrix representing the transformation is known as a smoother matrix or hat matrix. [citation needed] The operation of applying such a matrix transformation is called convolution.