When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Principal_component_analysis

    Principal component analysis (PCA) is a linear dimensionality reduction technique with applications in exploratory data analysis, visualization and data preprocessing.. The data is linearly transformed onto a new coordinate system such that the directions (principal components) capturing the largest variation in the data can be easily identified.

  3. Scree plot - Wikipedia

    en.wikipedia.org/wiki/Scree_plot

    In multivariate statistics, a scree plot is a line plot of the eigenvalues of factors or principal components in an analysis. [1] The scree plot is used to determine the number of factors to retain in an exploratory factor analysis (FA) or principal components to keep in a principal component analysis (PCA).

  4. Kernel principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Kernel_principal_component...

    Output after kernel PCA, with a Gaussian kernel. Note in particular that the first principal component is enough to distinguish the three different groups, which is impossible using only linear PCA, because linear PCA operates only in the given (in this case two-dimensional) space, in which these concentric point clouds are not linearly separable.

  5. L1-norm principal component analysis - Wikipedia

    en.wikipedia.org/wiki/L1-norm_principal...

    In ()-(), L1-norm ‖ ‖ returns the sum of the absolute entries of its argument and L2-norm ‖ ‖ returns the sum of the squared entries of its argument.If one substitutes ‖ ‖ in by the Frobenius/L2-norm ‖ ‖, then the problem becomes standard PCA and it is solved by the matrix that contains the dominant singular vectors of (i.e., the singular vectors that correspond to the highest ...

  6. Elbow method (clustering) - Wikipedia

    en.wikipedia.org/wiki/Elbow_method_(clustering)

    The idea is that the first clusters will add much information (explain a lot of variation), since the data actually consist of that many groups (so these clusters are necessary), but once the number of clusters exceeds the actual number of groups in the data, the added information will drop sharply, because it is just subdividing the actual groups.

  7. Human genetic clustering - Wikipedia

    en.wikipedia.org/wiki/Human_genetic_clustering

    The most common multidimensional statistical method used for genetic clustering is principal component analysis (PCA), which plots individuals by two or more axes (their "principal components") that represent aggregations of genetic markers that account for the highest variance. Clusters can then be identified by visually assessing the ...

  8. It turns out Punxsutawney Phil is wrong more often than not - AOL

    www.aol.com/news/report-questions-punxsutawney...

    Pennsylvania’s Punxsutawney Phil might be the most well-known weather-predicting groundhog, but a new list casts doubt on his accuracy.Phil did so poorly that even nonliving critters outshine ...

  9. Principal component regression - Wikipedia

    en.wikipedia.org/wiki/Principal_component_regression

    In statistics, principal component regression (PCR) is a regression analysis technique that is based on principal component analysis (PCA). PCR is a form of reduced rank regression. [1] More specifically, PCR is used for estimating the unknown regression coefficients in a standard linear regression model.