Search results
Results From The WOW.Com Content Network
NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]
For a square N×N matrix A n,m = A(n,m), in-place transposition is easy because all of the cycles have length 1 (the diagonals A n,n) or length 2 (the upper triangle is swapped with the lower triangle). Pseudocode to accomplish this (assuming zero-based array indices) is: for n = 0 to N - 1 for m = n + 1 to N swap A(n,m) with A(m,n)
More generally, there are d! possible orders for a given array, one for each permutation of dimensions (with row-major and column-order just 2 special cases), although the lists of stride values are not necessarily permutations of each other, e.g., in the 2-by-3 example above, the strides are (3,1) for row-major and (1,2) for column-major.
This representation for multi-dimensional arrays is quite prevalent in C and C++ software. However, C and C++ will use a linear indexing formula for multi-dimensional arrays that are declared with compile time constant size, e.g. by int A [10][20] or int A [m][n], instead of the traditional int ** A. [8] The C99 standard introduced Variable ...
The Hadamard product operates on identically shaped matrices and produces a third matrix of the same dimensions. In mathematics, the Hadamard product (also known as the element-wise product, entrywise product [1]: ch. 5 or Schur product [2]) is a binary operation that takes in two matrices of the same dimensions and returns a matrix of the multiplied corresponding elements.
c = a + b In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x) will result in an array y whose elements are sine of the corresponding elements of the array x. Vectorized index operations are also ...
In computer algorithms, block swap algorithms swap two regions of elements of an array.It is simple to swap two non-overlapping regions of an array of equal size. However, it is not simple to swap two non-overlapping regions of an array in-place that are next to each other, but are of unequal sizes (such swapping is equivalent to array rotation).
In Python NumPy arrays implement the flatten method, [note 1] while in R the desired effect can be achieved via the c() or as.vector() functions or, more efficiently, by removing the dimensions attribute of a matrix A with dim(A) <- NULL.