Search results
Results From The WOW.Com Content Network
A stepper motor, also known as step motor or stepping motor, [1] is a brushless DC electric motor that rotates in a series of small and discrete angular steps. [2] Stepper motors can be set to any given step position without needing a position sensor for feedback. The step position can be rapidly increased or decreased to create continuous ...
The motor from a 3.5 in floppy disk drive. The coils, arranged radially, are made from copper wire coated with blue insulation. The rotor (upper right) has been removed and turned upside-down. The gray ring inside its cup is a permanent magnet. This particular motor is an outrunner, with the stator inside the rotor. DC brushless ducted fan. The ...
These include dc brush, dc brushless, stepper, or in some cases, even induction motors. It all depends on the application requirements and the loads the actuator is designed to move. For example, a linear actuator using an integral horsepower AC induction motor driving a lead screw can be used to operate a large valve in a refinery.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate
A motor controller converts DC to AC. This design is simpler than that of brushed motors because it eliminates the complication of transferring power from outside the motor to the spinning rotor. An example of a brushless, synchronous DC motor is a stepper motor which can divide a full rotation into a large number of steps.
The switched reluctance motor (SRM) is a type of reluctance motor. Unlike brushed DC motors , power is delivered to windings in the stator (case) rather than the rotor . This simplifies mechanical design because power does not have to be delivered to the moving rotor, which eliminates the need for a commutator .
Bimorph cantilevers used in stepper or walk drive motor. Not to be confused with the similarly named electromagnetic stepper motor, these motors are similar to the inchworm motor, however, the piezoelectric elements can be bimorph actuators which bend to feed the slider rather than using a separate expanding and contracting element. [4]
The Ford EEC or Electronic Engine Control is a series of ECU (or Engine Control Unit) that was designed and built by Ford Motor Company. The first system, EEC I, used processors and components developed by Toshiba in 1973. It began production in 1974, and went into mass production in 1975. It subsequently went through several model iterations.