Search results
Results From The WOW.Com Content Network
In computing, a group of parallel arrays (also known as structure of arrays or SoA) is a form of implicit data structure that uses multiple arrays to represent a singular array of records. It keeps a separate, homogeneous data array for each field of the record, each having the same number of elements. Then, objects located at the same index in ...
"Embarrassingly" is used here to refer to parallelization problems which are "embarrassingly easy". [4] The term may imply embarrassment on the part of developers or compilers: "Because so many important problems remain unsolved mainly due to their intrinsic computational complexity, it would be embarrassing not to develop parallel implementations of polynomial homotopy continuation methods."
Concurrent and parallel programming languages involve multiple timelines. Such languages provide synchronization constructs whose behavior is defined by a parallel execution model . A concurrent programming language is defined as one which uses the concept of simultaneously executing processes or threads of execution as a means of structuring a ...
This order is usually determined by the order in which the elements are added to the structure, but the elements can be rearranged in some contexts, such as sorting a list. For a structure that isn't ordered, on the other hand, no assumptions can be made about the ordering of the elements (although a physical implementation of these data types ...
A singly-linked list structure, implementing a list with three integer elements. The term list is also used for several concrete data structures that can be used to implement abstract lists, especially linked lists and arrays. In some contexts, such as in Lisp programming, the term list may refer specifically to a linked list rather than an array.
Loop-level parallelism is a form of parallelism in software programming that is concerned with extracting parallel tasks from loops.The opportunity for loop-level parallelism often arises in computing programs where data is stored in random access data structures.
Concurrent data structures are significantly more difficult to design and to verify as being correct than their sequential counterparts. The primary source of this additional difficulty is concurrency, exacerbated by the fact that threads must be thought of as being completely asynchronous: they are subject to operating system preemption, page faults, interrupts, and so on.
One concept used in programming parallel programs is the future concept, where one part of a program promises to deliver a required datum to another part of a program at some future time. Efforts to standardize parallel programming include an open standard called OpenHMPP for hybrid multi-core parallel