When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Regular singular point - Wikipedia

    en.wikipedia.org/wiki/Regular_singular_point

    This is an ordinary differential equation of second order. It is found in the solution to Laplace's equation in cylindrical coordinates: + + = for an arbitrary real or complex number α (the order of the Bessel function).

  3. Sturm–Liouville theory - Wikipedia

    en.wikipedia.org/wiki/Sturm–Liouville_theory

    The differential equation is said to be in Sturm–Liouville form or self-adjoint form.All second-order linear homogenous ordinary differential equations can be recast in the form on the left-hand side of by multiplying both sides of the equation by an appropriate integrating factor (although the same is not true of second-order partial differential equations, or if y is a vector).

  4. Characteristic equation (calculus) - Wikipedia

    en.wikipedia.org/wiki/Characteristic_equation...

    If a second-order differential equation has a characteristic equation with complex conjugate roots of the form r 1 = a + bi and r 2 = a − bi, then the general solution is accordingly y(x) = c 1 e (a + bi )x + c 2 e (a − bi )x. By Euler's formula, which states that e iθ = cos θ + i sin θ, this solution can be rewritten as follows:

  5. Ordinary differential equation - Wikipedia

    en.wikipedia.org/wiki/Ordinary_differential_equation

    Sturm–Liouville theory is a theory of a special type of second-order linear ordinary differential equation. Their solutions are based on eigenvalues and corresponding eigenfunctions of linear operators defined via second-order homogeneous linear equations .

  6. Quadratic equation - Wikipedia

    en.wikipedia.org/wiki/Quadratic_equation

    For example, let a denote a multiplicative generator of the group of units of F 4, the Galois field of order four (thus a and a + 1 are roots of x 2 + x + 1 over F 4. Because ( a + 1) 2 = a , a + 1 is the unique solution of the quadratic equation x 2 + a = 0 .

  7. Laplace's equation - Wikipedia

    en.wikipedia.org/wiki/Laplace's_equation

    In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties.This is often written as = or =, where = = is the Laplace operator, [note 1] is the divergence operator (also symbolized "div"), is the gradient operator (also symbolized "grad"), and (,,) is a twice-differentiable real-valued function.

  8. Separation of variables - Wikipedia

    en.wikipedia.org/wiki/Separation_of_variables

    This equation is an equation only of y'' and y', meaning it is reducible to the general form described above and is, therefore, separable. Since it is a second-order separable equation, collect all x variables on one side and all y' variables on the other to get: (′) (′) =.

  9. Euler–Lagrange equation - Wikipedia

    en.wikipedia.org/wiki/Euler–Lagrange_equation

    In the calculus of variations and classical mechanics, the Euler–Lagrange equations [1] are a system of second-order ordinary differential equations whose solutions are stationary points of the given action functional. The equations were discovered in the 1750s by Swiss mathematician Leonhard Euler and Italian mathematician Joseph-Louis Lagrange.