Search results
Results From The WOW.Com Content Network
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
[4] [5] [6] A kinematics problem begins by describing the geometry of the system and declaring the initial conditions of any known values of position, velocity and/or acceleration of points within the system. Then, using arguments from geometry, the position, velocity and acceleration of any unknown parts of the system can be determined.
Kinematics; Equation of motion; Dynamics (mechanics) Classical mechanics; Isolated physical system. Lagrangian mechanics; Hamiltonian mechanics; Routhian mechanics; Hamilton-Jacobi theory; Appell's equation of motion; Udwadia–Kalaba equation; Celestial mechanics; Orbit; Lagrange point. Kolmogorov-Arnold-Moser theorem; N-body problem, many ...
From this point of view the kinematics equations can be used in two different ways. The first called forward kinematics uses specified values for the joint parameters to compute the end-effector position and orientation. The second called inverse kinematics uses the position and orientation of the end-effector to compute the joint parameters ...
Inverse dynamics is an inverse problem.It commonly refers to either inverse rigid body dynamics or inverse structural dynamics.Inverse rigid-body dynamics is a method for computing forces and/or moments of force (torques) based on the kinematics (motion) of a body and the body's inertial properties (mass and moment of inertia).
Traditionally the Newton–Euler equations is the grouping together of Euler's two laws of motion for a rigid body into a single equation with 6 components, using column vectors and matrices. These laws relate the motion of the center of gravity of a rigid body with the sum of forces and torques (or synonymously moments ) acting on the rigid body.
[1] [2] [3] Since the mid-20th century, the term "dynamics" (or "analytical dynamics") has largely superseded "kinetics" in physics textbooks, [4] though the term is still used in engineering. In plasma physics , kinetics refers to the study of continua in velocity space.
The solution of these equations of motion provides a description of the position, the motion and the acceleration of the individual components of the system, and overall the system itself, as a function of time. The formulation and solution of rigid body dynamics is an important tool in the computer simulation of mechanical systems.