Search results
Results From The WOW.Com Content Network
A pendulum with a period of 2.8 s and a frequency of 0.36 Hz. For cyclical phenomena such as oscillations, waves, or for examples of simple harmonic motion, the term frequency is defined as the number of cycles or repetitions per unit of time.
The time taken for an oscillation to occur is often referred to as the oscillatory period. The systems where the restoring force on a body is directly proportional to its displacement, such as the dynamics of the spring-mass system, are described mathematically by the simple harmonic oscillator and the regular periodic motion is known as simple ...
The first set of units defined using the caesium standard were those relating to time, with the second being defined in 1967 as "the duration of 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium 133 atom" meaning that:
The period of a mass attached to a pendulum of length l with gravitational acceleration is given by = This shows that the period of oscillation is independent of the amplitude and mass of the pendulum but not of the acceleration due to gravity, g {\displaystyle g} , therefore a pendulum of the same length on the Moon would swing more slowly due ...
A nonzero constant P for which this is the case is called a period of the function. If there exists a least positive [2] constant P with this property, it is called the fundamental period (also primitive period, basic period, or prime period.) Often, "the" period of a function is used to mean its fundamental period.
The cycle per second is a once-common English name for the unit of frequency now known as the hertz (Hz). Cycles per second may be denoted by c.p.s., c/s, or, ambiguously, just "cycles" (Cyc., Cy., C, or c). The term comes from repetitive phenomena such as sound waves having a frequency measurable as a number of oscillations, or cycles, per ...
The period, the time for one complete oscillation, is given by the expression = =, which is a good approximation of the actual period when is small. Notice that in this approximation the period τ {\displaystyle \tau } is independent of the amplitude θ 0 {\displaystyle \theta _{0}} .
For a point mass on a weightless string of length L swinging with an infinitesimally small amplitude, without resistance, the length of the string of a seconds pendulum is equal to L = g/ π 2 where g is the acceleration due to gravity, with units of length per second squared, and L is the length of the string in the same units.