When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Nonparametric skew - Wikipedia

    en.wikipedia.org/wiki/Nonparametric_skew

    In statistics and probability theory, the nonparametric skew is a statistic occasionally used with random variables that take real values. [ 1 ] [ 2 ] It is a measure of the skewness of a random variable's distribution —that is, the distribution's tendency to "lean" to one side or the other of the mean .

  3. Kruskal–Wallis test - Wikipedia

    en.wikipedia.org/wiki/Kruskal–Wallis_test

    The Kruskal–Wallis test by ranks, Kruskal–Wallis test (named after William Kruskal and W. Allen Wallis), or one-way ANOVA on ranks is a non-parametric statistical test for testing whether samples originate from the same distribution. [1] [2] [3] It is used for comparing two or more independent samples of equal or different sample sizes.

  4. List of statistical tests - Wikipedia

    en.wikipedia.org/wiki/List_of_statistical_tests

    Assumptions, parametric and non-parametric: There are two groups of statistical tests, parametric and non-parametric. The choice between these two groups needs to be justified. The choice between these two groups needs to be justified.

  5. Skewness - Wikipedia

    en.wikipedia.org/wiki/Skewness

    In the older notion of nonparametric skew, defined as () /, where is the mean, is the median, and is the standard deviation, the skewness is defined in terms of this relationship: positive/right nonparametric skew means the mean is greater than (to the right of) the median, while negative/left nonparametric skew means the mean is less than (to ...

  6. Nonparametric statistics - Wikipedia

    en.wikipedia.org/wiki/Nonparametric_statistics

    Nonparametric statistics is a type of statistical analysis that makes minimal assumptions about the underlying distribution of the data being studied. Often these models are infinite-dimensional, rather than finite dimensional, as in parametric statistics . [ 1 ]

  7. D'Agostino's K-squared test - Wikipedia

    en.wikipedia.org/wiki/D'Agostino's_K-squared_test

    In the following, { x i } denotes a sample of n observations, g 1 and g 2 are the sample skewness and kurtosis, m j ’s are the j-th sample central moments, and ¯ is the sample mean. Frequently in the literature related to normality testing, the skewness and kurtosis are denoted as √ β 1 and β 2 respectively.

  8. Kolmogorov–Smirnov test - Wikipedia

    en.wikipedia.org/wiki/Kolmogorov–Smirnov_test

    Illustration of the Kolmogorov–Smirnov statistic. The red line is a model CDF, the blue line is an empirical CDF, and the black arrow is the KS statistic.. In statistics, the Kolmogorov–Smirnov test (also K–S test or KS test) is a nonparametric test of the equality of continuous (or discontinuous, see Section 2.2), one-dimensional probability distributions.

  9. Jarque–Bera test - Wikipedia

    en.wikipedia.org/wiki/Jarque–Bera_test

    In statistics, the Jarque–Bera test is a goodness-of-fit test of whether sample data have the skewness and kurtosis matching a normal distribution. The test is named after Carlos Jarque and Anil K. Bera. The test statistic is always nonnegative. If it is far from zero, it signals the data do not have a normal distribution.