Search results
Results From The WOW.Com Content Network
Noting that any identity matrix is a rotation matrix, and that matrix multiplication is associative, we may summarize all these properties by saying that the n × n rotation matrices form a group, which for n > 2 is non-abelian, called a special orthogonal group, and denoted by SO(n), SO(n,R), SO n, or SO n (R), the group of n × n rotation ...
Then, this initial bounding box is partitioned into a grid of smaller cubes, and grid points near the boundary of the convex hull of the input are used as a coreset, a small set of points whose optimum bounding box approximates the optimum bounding box of the original input. Finally, O'Rourke's algorithm is applied to find the exact optimum ...
A bilinear map is a function: such that for all , the map (,) is a linear map from to , and for all , the map (,) is a linear map from to . In other words, when we hold the first entry of the bilinear map fixed while letting the second entry vary, the result is a linear operator, and similarly for when we hold the second entry fixed.
The matrix A is said to represent the linear map f, and A is called the transformation matrix of f. For example, the 2×2 matrix = [] can be viewed as the transform of the unit square into a parallelogram with vertices at (0, 0), (a, b), (a + c, b + d), and (c, d).
The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:
Trilinear interpolation as two bilinear interpolations followed by a linear interpolation. Trilinear interpolation is a method of multivariate interpolation on a 3-dimensional regular grid . It approximates the value of a function at an intermediate point ( x , y , z ) {\displaystyle (x,y,z)} within the local axial rectangular prism linearly ...
The contours can be of two kinds: Isolines – lines following a single data level, or isovalue. Isobands – filled areas between isolines. Typical applications include the contour lines on topographic maps or the generation of isobars for weather maps. Marching squares takes a similar approach to the 3D marching cubes algorithm:
The Z-ordering can be used to efficiently build a quadtree (2D) or octree (3D) for a set of points. [4] [5] The basic idea is to sort the input set according to Z-order.Once sorted, the points can either be stored in a binary search tree and used directly, which is called a linear quadtree, [6] or they can be used to build a pointer based quadtree.