Search results
Results From The WOW.Com Content Network
This image is a derivative work of the following images: File:Nitrogen Cycle.svg licensed with Cc-by-sa-3.0 . 2009-09-27T05:47:47Z Raeky 800x600 (298078 Bytes) outlines for text
{{Information| |Description=Diagram of the nitrogen cycle in an aquarium. |Source=Own work, drawn in Sodipodi and Inkscape by Ilmari Karonen. |Date=2005-10-2 File usage The following 4 pages use this file:
An example chemical cycle, a schematic representation of a Nitrogen cycle on Earth. This process results in the continual recycling of nitrogen gas involving the ocean. Chemical cycling describes systems of repeated circulation of chemicals between other compounds, states and materials, and back to their original state, that occurs in space ...
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
The nitrogen cycle is of particular interest to ecologists because nitrogen availability can affect the rate of key ecosystem processes, including primary production and decomposition. Human activities such as fossil fuel combustion, use of artificial nitrogen fertilizers, and release of nitrogen in wastewater have dramatically altered the ...
The conversion of nitrogen can be carried out through both biological and physical processes. Important processes in the nitrogen cycle include fixation, ammonification, nitrification, and denitrification. 78% of the Earth's atmosphere is molecular nitrogen (N 2), [39] making it the largest source of nitrogen.
Anammox, an abbreviation for "anaerobic ammonium oxidation", is a globally important microbial process of the nitrogen cycle [1] that takes place in many natural environments. The bacteria mediating this process were identified in 1999, and were a great surprise for the scientific community. [ 2 ]
Nitrobacter play an important role in the nitrogen cycle by oxidizing nitrite into nitrate in soil and marine systems. [2] Unlike plants, where electron transfer in photosynthesis provides the energy for carbon fixation, Nitrobacter uses energy from the oxidation of nitrite ions, NO 2 −, into nitrate ions, NO 3 −, to fulfill their energy needs.