When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Betti number - Wikipedia

    en.wikipedia.org/wiki/Betti_number

    For a torus, the first Betti number is b 1 = 2 , which can be intuitively thought of as the number of circular "holes" Informally, the kth Betti number refers to the number of k-dimensional holes on a topological surface. A "k-dimensional hole" is a k-dimensional cycle that is not a boundary of a (k+1)-dimensional object.

  3. Runge's theorem - Wikipedia

    en.wikipedia.org/wiki/Runge's_theorem

    Given a holomorphic function f on the blue compact set and a point in each of the holes, one can approximate f as well as desired by rational functions having poles only at those three points. In complex analysis , Runge's theorem (also known as Runge's approximation theorem ) is named after the German mathematician Carl Runge who first proved ...

  4. Rational function - Wikipedia

    en.wikipedia.org/wiki/Rational_function

    The degree of the graph of a rational function is not the degree as defined above: it is the maximum of the degree of the numerator and one plus the degree of the denominator. In some contexts, such as in asymptotic analysis, the degree of a rational function is the difference between the degrees of the numerator and the denominator.

  5. 10 Hard Math Problems That Even the Smartest People in the ...

    www.aol.com/10-hard-math-problems-even-150000090...

    A refresher on the Collatz Conjecture: It’s all about that function f(n), shown above, which takes even numbers and cuts them in half, while odd numbers get tripled and then added to 1. Take any ...

  6. AP Precalculus - Wikipedia

    en.wikipedia.org/wiki/AP_Precalculus

    Rational Functions and End Behavior 2 1.8 Rational Functions and Zeros 1 1.9 Rational Functions and Vertical Asymptotes 1 1.10 Rational Functions and Holes 1 1.11 Equivalent Representations of Polynomial and Rational Expressions 2 1.12 Transformations of Functions 2 1.13 Function Model Selection and Assumption Articulation 2 1.14

  7. Genus (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Genus_(mathematics)

    Thus, a planar graph has genus 0, because it can be drawn on a sphere without self-crossing. The non-orientable genus of a graph is the minimal integer n such that the graph can be drawn without crossing itself on a sphere with n cross-caps (i.e. a non-orientable surface of (non-orientable) genus n). (This number is also called the demigenus.)

  8. Polynomial and rational function modeling - Wikipedia

    en.wikipedia.org/wiki/Polynomial_and_rational...

    Rational functions can be either finite or infinite for finite values, or finite or infinite for infinite x values. Thus, rational functions can easily be incorporated into a rational function model. Rational function models can often be used to model complicated structure with a fairly low degree in both the numerator and denominator.

  9. Pole–zero plot - Wikipedia

    en.wikipedia.org/wiki/Pole–zero_plot

    A pole-zero plot shows the location in the complex plane of the poles and zeros of the transfer function of a dynamic system, such as a controller, compensator, sensor, equalizer, filter, or communications channel. By convention, the poles of the system are indicated in the plot by an X while the zeros are indicated by a circle or O.