When.com Web Search

  1. Ad

    related to: factorisation class 8 explanation

Search results

  1. Results From The WOW.Com Content Network
  2. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    The polynomial x 2 + cx + d, where a + b = c and ab = d, can be factorized into (x + a)(x + b).. In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind.

  3. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    Continuing this process until every factor is prime is called prime factorization; the result is always unique up to the order of the factors by the prime factorization theorem. To factorize a small integer n using mental or pen-and-paper arithmetic, the simplest method is trial division : checking if the number is divisible by prime numbers 2 ...

  4. Fundamental theorem of arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    While Euclid took the first step on the way to the existence of prime factorization, Kamāl al-Dīn al-Fārisī took the final step [8] and stated for the first time the fundamental theorem of arithmetic. [9] Article 16 of Gauss's Disquisitiones Arithmeticae is an early modern statement and proof employing modular arithmetic. [1]

  5. Factorization of polynomials - Wikipedia

    en.wikipedia.org/wiki/Factorization_of_polynomials

    This factorization is also unique up to the choice of a sign. For example, + + + = + + + is a factorization into content and primitive part. Gauss proved that the product of two primitive polynomials is also primitive (Gauss's lemma). This implies that a primitive polynomial is irreducible over the rationals if and only if it is irreducible ...

  6. General number field sieve - Wikipedia

    en.wikipedia.org/wiki/General_number_field_sieve

    In number theory, the general number field sieve (GNFS) is the most efficient classical algorithm known for factoring integers larger than 10 100. Heuristically, its complexity for factoring an integer n (consisting of ⌊log 2 n ⌋ + 1 bits) is of the form

  7. Algebraic number field - Wikipedia

    en.wikipedia.org/wiki/Algebraic_number_field

    The failure of unique factorization is measured by the class number, commonly denoted h, the cardinality of the so-called ideal class group. This group is always finite. This group is always finite. The ring of integers O K {\displaystyle {\mathcal {O}}_{K}} possesses unique factorization if and only if it is a principal ring or, equivalently ...

  8. Factorization system - Wikipedia

    en.wikipedia.org/wiki/Factorization_system

    A weak factorization system (E, M) for a category C consists of two classes of morphisms E and M of C such that: [1] The class E is exactly the class of morphisms having the left lifting property with respect to each morphism in M. The class M is exactly the class of morphisms having the right lifting property with respect to each morphism in E.

  9. Unique factorization domain - Wikipedia

    en.wikipedia.org/wiki/Unique_factorization_domain

    Unique factorization domains appear in the following chain of class inclusions: rngs ⊃ rings ⊃ commutative rings ⊃ integral domains ⊃ integrally closed domains ⊃ GCD domains ⊃ unique factorization domains ⊃ principal ideal domains ⊃ Euclidean domains ⊃ fields ⊃ algebraically closed fields