When.com Web Search

  1. Ads

    related to: how to solve complex roots of inequality calculator 2 step graph answer

Search results

  1. Results From The WOW.Com Content Network
  2. Bairstow's method - Wikipedia

    en.wikipedia.org/wiki/Bairstow's_method

    In numerical analysis, Bairstow's method is an efficient algorithm for finding the roots of a real polynomial of arbitrary degree. The algorithm first appeared in the appendix of the 1920 book Applied Aerodynamics by Leonard Bairstow. [1] [non-primary source needed] The algorithm finds the roots in complex conjugate pairs using only real ...

  3. Cubic equation - Wikipedia

    en.wikipedia.org/wiki/Cubic_equation

    With one real and two complex roots, the three roots can be represented as points in the complex plane, as can the two roots of the cubic's derivative. There is an interesting geometrical relationship among all these roots. The points in the complex plane representing the three roots serve as the vertices of an isosceles triangle.

  4. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    The simplest root-finding algorithm is the bisection method. Let f be a continuous function for which one knows an interval [a, b] such that f(a) and f(b) have opposite signs (a bracket). Let c = (a +b)/2 be the middle of the interval (the midpoint or the point that bisects

  5. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    Newton's method is a powerful technique—in general the convergence is quadratic: as the method converges on the root, the difference between the root and the approximation is squared (the number of accurate digits roughly doubles) at each step. However, there are some difficulties with the method.

  6. Brent's method - Wikipedia

    en.wikipedia.org/wiki/Brent's_method

    In the fifth iteration, inverse quadratic interpolation yields −3.45500, which lies in the required interval. However, the previous iteration was a bisection step, so the inequality |−3.45500 − b 4 | ≤ |b 4 − b 3 | / 2 need to be satisfied. This inequality is false, so we use the midpoint m = −3.35724.

  7. Bisection method - Wikipedia

    en.wikipedia.org/wiki/Bisection_method

    A few steps of the bisection method applied over the starting range [a 1;b 1].The bigger red dot is the root of the function. In mathematics, the bisection method is a root-finding method that applies to any continuous function for which one knows two values with opposite signs.