Search results
Results From The WOW.Com Content Network
In mathematics and physics, vector notation is a commonly used notation for representing vectors, [1] [2] which may be Euclidean vectors, or more generally, members of a vector space. For denoting a vector, the common typographic convention is lower case, upright boldface type, as in v .
Vector notation, common notation used when working with vectors Vector operator , a type of differential operator used in vector calculus Vector product , or cross product, an operation on two vectors in a three-dimensional Euclidean space, producing a third three-dimensional Euclidean vector perpendicular to the original two
Symbol Name Meaning SI unit of measure nabla dot : the divergence operator often pronounced "del dot" per meter (m −1) : nabla cross : the curl operator often pronounced "del cross"
In this article, vectors are represented in boldface to distinguish them from scalars. [nb 1] [1] A vector space over a field F is a non-empty set V together with a binary operation and a binary function that satisfy the eight axioms listed below. In this context, the elements of V are commonly called vectors, and the elements of F are called ...
Leibniz's notation for the derivative, which is used in several slightly different ways. 1. If y is a variable that depends on x , then d y d x {\displaystyle \textstyle {\frac {\mathrm {d} y}{\mathrm {d} x}}} , read as "d y over d x" (commonly shortened to "d y d x"), is the derivative of y with respect to x .
The notations (î, ĵ, k̂), (x̂ 1, x̂ 2, x̂ 3), (ê x, ê y, ê z), or (ê 1, ê 2, ê 3), with or without hat, are also used, [1] particularly in contexts where i, j, k might lead to confusion with another quantity (for instance with index symbols such as i, j, k, which are used to identify an element of a set or array or sequence of ...
Vectors also describe many other physical quantities, such as linear displacement, displacement, linear acceleration, angular acceleration, linear momentum, and angular momentum. Other physical vectors, such as the electric and magnetic field, are represented as a system of vectors at each point of a physical space; that is, a vector field ...
Matrix calculus refers to a number of different notations that use matrices and vectors to collect the derivative of each component of the dependent variable with respect to each component of the independent variable. In general, the independent variable can be a scalar, a vector, or a matrix while the dependent variable can be any of these as ...