Search results
Results From The WOW.Com Content Network
A map is a function, as in the association of any of the four colored shapes in X to its color in Y. In mathematics, a map or mapping is a function in its general sense. [1] These terms may have originated as from the process of making a geographical map: mapping the Earth surface to a sheet of paper. [2]
In mathematics, more specifically in topology, an open map is a function between two topological spaces that maps open sets to open sets. [1] [2] [3] That is, a function : is open if for any open set in , the image is open in . Likewise, a closed map is a function that maps closed sets to closed sets.
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping between two vector spaces that preserves the operations of vector addition and scalar multiplication.
Mapping may refer to: Cartography, the process of making a map; Mapping (mathematics), a synonym for a mathematical function and its generalizations
In mathematics, a contraction mapping, or contraction or contractor, on a metric space (M, d) is a function f from M to itself, with the property that there is some real number < such that for all x and y in M,
A degree two map of a sphere onto itself.. In topology, the degree of a continuous mapping between two compact oriented manifolds of the same dimension is a number that represents the number of times that the domain manifold wraps around the range manifold under the mapping.
The only difference between this definition and the ε–δ definition of continuity is the order of quantifiers: the choice of δ must depend only on ε and not on the point x. However, this subtle change makes a big difference. For example, uniformly continuous maps take Cauchy sequences in M 1 to Cauchy sequences in M 2. In other words ...
In mathematics, a conformal map is a function that locally preserves angles, but not necessarily lengths.. More formally, let and be open subsets of .A function : is called conformal (or angle-preserving) at a point if it preserves angles between directed curves through , as well as preserving orientation.