Search results
Results From The WOW.Com Content Network
The actual data mining task is the semi-automatic or automatic analysis of large quantities of data to extract previously unknown, interesting patterns such as groups of data records (cluster analysis), unusual records (anomaly detection), and dependencies (association rule mining, sequential pattern mining).
Data mining is a particular data analysis technique that focuses on statistical modeling and knowledge discovery for predictive rather than purely descriptive purposes, while business intelligence covers data analysis that relies heavily on aggregation, focusing mainly on business information. [4]
Spatial data mining is the application of data mining methods to spatial data. The end objective of spatial data mining is to find patterns in data with respect to geography. So far, data mining and Geographic Information Systems (GIS) have existed as two separate technologies, each with its own methods, traditions, and approaches to ...
Therefore, data governance is a critical element of data collection and analysis since it determines the quality of data while integrity constraints guarantee the reliability of information collected from data sources. Various technologies including Big Data are used by businesses and organizations to allow users to search for specific ...
Considering all the above-mentioned definitions, affinity analysis can develop rules that will predict the occurrence of an event based on the occurrence of other events. This data mining method has been explored in different fields including disease diagnosis, market basket analysis, retail industry, higher education, and financial analysis.
Frequent pattern discovery (or FP discovery, FP mining, or Frequent itemset mining) is part of knowledge discovery in databases, Massive Online Analysis, and data mining; it describes the task of finding the most frequent and relevant patterns in large datasets. [1] [2] The concept was first introduced for mining transaction databases. [3]
Clustering – is the task of discovering groups and structures in the data that are in some way or another "similar", without using known structures in the data. The Wikipedia Data Mining Project's goal is to discover the internal pattern in a Wikipedia data set and explore various data mining algorithms.
Data scientists often work with unstructured data such as text or images and use machine learning algorithms to build predictive models and make data-driven decisions. In addition to statistical analysis, data science often involves tasks such as data preprocessing, feature engineering, and model selection.