Search results
Results From The WOW.Com Content Network
Einstein's derivation of the gravitational field equations was delayed because of the hole argument which he created in 1913. [1] However the problem was not as given in the section above. By 1912, the time Einstein started what he called his "struggle with the meaning of the coordinates", [ 2 ] he already knew to search for tensorial equations ...
In physics, the energy–momentum relation, or relativistic dispersion relation, is the relativistic equation relating total energy (which is also called relativistic energy) to invariant mass (which is also called rest mass) and momentum. It is the extension of mass–energy equivalence for bodies or systems with non-zero momentum.
Mass–energy equivalence states that all objects having mass, or massive objects, have a corresponding intrinsic energy, even when they are stationary.In the rest frame of an object, where by definition it is motionless and so has no momentum, the mass and energy are equal or they differ only by a constant factor, the speed of light squared (c 2).
The Einsteinhaus on the Kramgasse in Bern, Einstein's residence at the time. Most of the papers were written in his apartment on the first floor above the street level. At the time the papers were written, Einstein did not have easy access to a complete set of scientific reference materials, although he did regularly read and contribute reviews to Annalen der Physik.
If the energy–momentum tensor T μν is that of an electromagnetic field in free space, i.e. if the electromagnetic stress–energy tensor = (+) is used, then the Einstein field equations are called the Einstein–Maxwell equations (with cosmological constant Λ, taken to be zero in conventional relativity theory): + = (+).
The Cauchy problem (sometimes called the initial value problem) is the attempt at finding a solution to a differential equation given initial conditions. In the context of general relativity , it means the problem of finding solutions to Einstein's field equations — a system of hyperbolic partial differential equations — given some initial ...
In the 20th century Albert Einstein's mass–energy equivalence expanded this understanding by linking mass and energy, and quantum mechanics introduced quantized energy levels. Today, energy is recognized as a fundamental conserved quantity across all domains of physics, underlying both classical and quantum phenomena.
where is the Einstein tensor, is the cosmological constant (sometimes taken to be zero for simplicity), is the metric tensor, is a constant, and is the stress–energy tensor. The Einstein field equations relate the Einstein tensor to the stress–energy tensor, which represents the distribution of energy, momentum and stress in the spacetime ...