When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Capacitance - Wikipedia

    en.wikipedia.org/wiki/Capacitance

    The energy (measured in joules) stored in a capacitor is equal to the work required to push the charges into the capacitor, i.e. to charge it. Consider a capacitor of capacitance C, holding a charge +q on one plate and −q on the other.

  3. Two capacitor paradox - Wikipedia

    en.wikipedia.org/wiki/Two_capacitor_paradox

    Since they both have the same capacitance the charge will be divided equally between the capacitors so each capacitor will have a charge of and a voltage of = =. At the beginning of the experiment the total initial energy W i {\displaystyle W_{i}} in the circuit is the energy stored in the charged capacitor:

  4. Quantum capacitance - Wikipedia

    en.wikipedia.org/wiki/Quantum_capacitance

    Therefore, as the capacitor charges or discharges, the voltage changes at a different rate than the galvani potential difference. In these situations, one cannot calculate capacitance merely by looking at the overall geometry and using Gauss's law. One must also take into account the band-filling / band-emptying effect, related to the density ...

  5. Capacitor - Wikipedia

    en.wikipedia.org/wiki/Capacitor

    This potential energy will remain in the capacitor until the charge is removed. If charge is allowed to move back from the positive to the negative plate, for example by connecting a circuit with resistance between the plates, the charge moving under the influence of the electric field will do work on the external circuit.

  6. List of electromagnetism equations - Wikipedia

    en.wikipedia.org/wiki/List_of_electromagnetism...

    Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.

  7. Electric potential energy - Wikipedia

    en.wikipedia.org/wiki/Electric_potential_energy

    The electrostatic potential energy U E stored in a system of two charges is equal to the electrostatic potential energy of a charge in the electrostatic potential generated by the other. That is to say, if charge q 1 generates an electrostatic potential V 1 , which is a function of position r , then U E = q 2 V 1 ( r 2 ) . {\displaystyle U ...

  8. Farad - Wikipedia

    en.wikipedia.org/wiki/Farad

    The capacitance of a capacitor is one farad when one coulomb of charge changes the potential between the plates by one volt. [1] [2] Equally, one farad can be described as the capacitance which stores a one-coulomb charge across a potential difference of one volt. [3] The relationship between capacitance, charge, and potential difference is linear.

  9. Gauss's law - Wikipedia

    en.wikipedia.org/wiki/Gauss's_law

    Gauss's law makes it possible to find the distribution of electric charge: The charge in any given region of the conductor can be deduced by integrating the electric field to find the flux through a small box whose sides are perpendicular to the conductor's surface and by noting that the electric field is perpendicular to the surface, and zero ...