When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Capacitance - Wikipedia

    en.wikipedia.org/wiki/Capacitance

    The energy (measured in joules) stored in a capacitor is equal to the work required to push the charges into the capacitor, i.e. to charge it. Consider a capacitor of capacitance C, holding a charge +q on one plate and −q on the other.

  3. Electric potential energy - Wikipedia

    en.wikipedia.org/wiki/Electric_potential_energy

    The electrostatic potential energy U E stored in a system of two charges is equal to the electrostatic potential energy of a charge in the electrostatic potential generated by the other. That is to say, if charge q 1 generates an electrostatic potential V 1 , which is a function of position r , then U E = q 2 V 1 ( r 2 ) . {\displaystyle U ...

  4. Electric potential - Wikipedia

    en.wikipedia.org/wiki/Electric_potential

    In short, an electric potential is the electric potential energy per unit charge. This value can be calculated in either a static (time-invariant) or a dynamic (time-varying) electric field at a specific time with the unit joules per coulomb (J⋅C −1) or volt (V). The electric potential at infinity is assumed to be zero.

  5. Joule - Wikipedia

    en.wikipedia.org/wiki/Joule

    The energy required to accelerate a 1 kg mass at 1 m/s 2 through a distance of 1 m. The kinetic energy of a 2 kg mass travelling at 1 m/s, or a 1 kg mass travelling at 1.41 m/s. The energy required to lift an apple up 1 m, assuming the apple has a mass of 101.97 g. The heat required to raise the temperature of 0.239 g of water from 0 °C to 1 ...

  6. Two capacitor paradox - Wikipedia

    en.wikipedia.org/wiki/Two_capacitor_paradox

    Since none of the original charge is lost, the final state of the capacitors will be as described above, with half the initial voltage on each capacitor. Since in this state the two capacitors together are left with half the energy, regardless of the amount of resistance half of the initial energy will be dissipated as heat in the wire resistance.

  7. RC time constant - Wikipedia

    en.wikipedia.org/wiki/RC_time_constant

    It is the time required to charge the capacitor, through the resistor, from an initial charge voltage of zero to approximately 63.2% of the value of an applied DC voltage, or to discharge the capacitor through the same resistor to approximately 36.8% of its initial charge voltage.

  8. Electronvolt - Wikipedia

    en.wikipedia.org/wiki/Electronvolt

    An electronvolt is the amount of energy gained or lost by a single electron when it moves through an electric potential difference of one volt.Hence, it has a value of one volt, which is 1 J/C, multiplied by the elementary charge e = 1.602 176 634 × 10 −19 C. [2]

  9. Farad - Wikipedia

    en.wikipedia.org/wiki/Farad

    The capacitance of a capacitor is one farad when one coulomb of charge changes the potential between the plates by one volt. [1] [2] Equally, one farad can be described as the capacitance which stores a one-coulomb charge across a potential difference of one volt. [3] The relationship between capacitance, charge, and potential difference is linear.