Search results
Results From The WOW.Com Content Network
Most of the carbonic acid then dissociates to bicarbonate and hydrogen ions. The bicarbonate buffer system is an acid-base homeostatic mechanism involving the balance of carbonic acid (H 2 CO 3), bicarbonate ion (HCO − 3), and carbon dioxide (CO 2) in order to maintain pH in the blood and duodenum, among other tissues, to support proper ...
Veverimer (TRC 101) is a promising investigational drug designed to treat metabolic acidosis by binding with the acid in the gastrointestinal tract and removing it from the body through excretion in the feces, in turn decreasing the amount of acid in the body, and increasing the level of bicarbonate in the blood.
The bicarbonate ion (hydrogencarbonate ion) is an anion with the empirical formula HCO − 3 and a molecular mass of 61.01 daltons; it consists of one central carbon atom surrounded by three oxygen atoms in a trigonal planar arrangement, with a hydrogen atom attached to one of the oxygens.
Metabolic alkalosis is an acid-base disorder in which the pH of tissue is elevated beyond the normal range (7.35–7.45). This is the result of decreased hydrogen ion concentration, leading to increased bicarbonate (HCO − 3), or alternatively a direct result of increased bicarbonate concentrations.
The converse happens if the pH in the ECF tends to rise: bicarbonate ions are then excreted into the urine and hydrogen ions into the blood plasma. The second and third lines of defense operate by making changes to the buffers, each of which consists of two components: a weak acid and its conjugate base .
It dissolves in the solution of blood plasma and into red blood cells (RBC), where carbonic anhydrase catalyzes its hydration to carbonic acid (H 2 CO 3). Carbonic acid then spontaneously dissociates to form bicarbonate Ions (HCO 3 −) and a hydrogen ion (H +). In response to the decrease in intracellular pCO 2, more CO 2 passively diffuses ...
Acid consumption from poisoning such as methanol ingestion, elevated levels of iron in the blood, and chronically decreased production of bicarbonate may also produce metabolic acidosis. Metabolic acidosis is compensated for in the lungs, as increased exhalation of carbon dioxide promptly shifts the buffering equation to reduce metabolic acid.
In acidaemia, the bicarbonate levels rise, so that they can neutralize the excess acid, while the contrary happens when there is alkalaemia. Thus when an arterial blood gas test reveals, for example, an elevated bicarbonate, the problem has been present for a couple of days, and metabolic compensation took place over a blood acidaemia problem.