When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Partial fraction decomposition - Wikipedia

    en.wikipedia.org/wiki/Partial_fraction_decomposition

    In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator.

  3. Chunking (division) - Wikipedia

    en.wikipedia.org/wiki/Chunking_(division)

    To calculate the whole number quotient of dividing a large number by a small number, the student repeatedly takes away "chunks" of the large number, where each "chunk" is an easy multiple (for example 100×, 10×, 5× 2×, etc.) of the small number, until the large number has been reduced to zero – or the remainder is less than the small ...

  4. Polynomial long division - Wikipedia

    en.wikipedia.org/wiki/Polynomial_long_division

    Place the result (+3) below the bar. 3x has been divided leaving no remainder, and can therefore be marked as used. The result 3 is then multiplied by the second term in the divisor −3 = −9. Determine the partial remainder by subtracting −4 − (−9) = 5. Mark −4 as used and place the new remainder 5 above it.

  5. Long division - Wikipedia

    en.wikipedia.org/wiki/Long_division

    Find the shortest sequence of digits starting from the left end of the dividend, 500, that the divisor 4 goes into at least once. In this case, this is simply the first digit, 5. The largest number that the divisor 4 can be multiplied by without exceeding 5 is 1, so the digit 1 is put above the 5 to start constructing the quotient.

  6. Binomial theorem - Wikipedia

    en.wikipedia.org/wiki/Binomial_theorem

    In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power ⁠ (+) ⁠ expands into a polynomial with terms of the form ⁠ ⁠, where the exponents ⁠ ⁠ and ⁠ ⁠ are nonnegative integers satisfying ⁠ + = ⁠ and the coefficient ⁠ ⁠ of each term is a specific positive integer ...

  7. Finite field arithmetic - Wikipedia

    en.wikipedia.org/wiki/Finite_field_arithmetic

    Under regular addition of polynomials, the sum would contain a term 2x 6.This term becomes 0x 6 and is dropped when the answer is reduced modulo 2.. Here is a table with both the normal algebraic sum and the characteristic 2 finite field sum of a few polynomials:

  8. Quotient (universal algebra) - Wikipedia

    en.wikipedia.org/wiki/Quotient_(universal_algebra)

    In mathematics, a quotient algebra is the result of partitioning the elements of an algebraic structure using a congruence relation. Quotient algebras are also called factor algebras . Here, the congruence relation must be an equivalence relation that is additionally compatible with all the operations of the algebra, in the formal sense ...

  9. Geometrical properties of polynomial roots - Wikipedia

    en.wikipedia.org/wiki/Geometrical_properties_of...

    These bounds are not invariant by scaling. That is, the roots of the polynomial p(sx) are the quotient by s of the root of p, and the bounds given for the roots of p(sx) are not the quotient by s of the bounds of p. Thus, one may get sharper bounds by minimizing over possible scalings. This gives