When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fisher–Yates shuffle - Wikipedia

    en.wikipedia.org/wiki/Fisher–Yates_shuffle

    The regular algorithm requires an n-entry array initialized with the input values, but then requires only k iterations to choose a random sample of k elements. Thus, it takes O(k) time and n space. The inside-out algorithm can be implemented using only a k-element array a. Elements a[i] for i ≥ k are simply not stored.

  3. Simple random sample - Wikipedia

    en.wikipedia.org/wiki/Simple_random_sample

    If a systematic pattern is introduced into random sampling, it is referred to as "systematic (random) sampling". An example would be if the students in the school had numbers attached to their names ranging from 0001 to 1000, and we chose a random starting point, e.g. 0533, and then picked every 10th name thereafter to give us our sample of 100 ...

  4. List of random number generators - Wikipedia

    en.wikipedia.org/wiki/List_of_random_number...

    Random number generators are important in many kinds of technical applications, including physics, engineering or mathematical computer studies (e.g., Monte Carlo simulations), cryptography and gambling (on game servers). This list includes many common types, regardless of quality or applicability to a given use case.

  5. Sorting algorithm - Wikipedia

    en.wikipedia.org/wiki/Sorting_algorithm

    Shuffling can also be implemented by a sorting algorithm, namely by a random sort: assigning a random number to each element of the list and then sorting based on the random numbers. This is generally not done in practice, however, and there is a well-known simple and efficient algorithm for shuffling: the Fisher–Yates shuffle .

  6. Monte Carlo method - Wikipedia

    en.wikipedia.org/wiki/Monte_Carlo_method

    the (pseudo-random) number generator has certain characteristics (e.g. a long "period" before the sequence repeats) the (pseudo-random) number generator produces values that pass tests for randomness; there are enough samples to ensure accurate results; the proper sampling technique is used; the algorithm used is valid for what is being modeled

  7. Inverse transform sampling - Wikipedia

    en.wikipedia.org/wiki/Inverse_transform_sampling

    Inverse transform sampling (also known as inversion sampling, the inverse probability integral transform, the inverse transformation method, or the Smirnov transform) is a basic method for pseudo-random number sampling, i.e., for generating sample numbers at random from any probability distribution given its cumulative distribution function.

  8. Random permutation - Wikipedia

    en.wikipedia.org/wiki/Random_permutation

    A simple algorithm to generate a permutation of n items uniformly at random without retries, known as the Fisher–Yates shuffle, is to start with any permutation (for example, the identity permutation), and then go through the positions 0 through n − 2 (we use a convention where the first element has index 0, and the last element has index n − 1), and for each position i swap the element ...

  9. Reservoir sampling - Wikipedia

    en.wikipedia.org/wiki/Reservoir_sampling

    Reservoir sampling is a family of randomized algorithms for choosing a simple random sample, without replacement, of k items from a population of unknown size n in a single pass over the items. The size of the population n is not known to the algorithm and is typically too large for all n items to fit into main memory .