Search results
Results From The WOW.Com Content Network
An example of a Kaplan–Meier plot for two conditions associated with patient survival. The Kaplan–Meier estimator, [1] [2] also known as the product limit estimator, is a non-parametric statistic used to estimate the survival function from lifetime data. In medical research, it is often used to measure the fraction of patients living for a ...
This example of a survival tree analysis uses the R package "rpart". [8] The example is based on 146 stage C prostate cancer patients in the data set stagec in rpart. Rpart and the stagec example are described in Atkinson and Therneau (1997), [9] which is also distributed as a vignette of the rpart package. [8] The variables in stages are:
[2] [3] [4] It has an integrated spreadsheet for data input and can import files in several formats (Excel, SPSS, CSV, ...). MedCalc includes basic parametric and non-parametric statistical procedures and graphs such as descriptive statistics , ANOVA , Mann–Whitney test , Wilcoxon test , χ 2 test , correlation , linear as well as non-linear ...
Paul Meier (July 24, 1924 – August 7, 2011) [1] was a statistician who promoted the use of randomized trials in medicine. [2] [3]Meier is known for introducing, with Edward L. Kaplan, the Kaplan–Meier estimator, [4] [5] a method for measuring how many patients survive a medical treatment from one duration to another, taking into account that the sampled population changes over time.
Epi Info has been in development for over 20 years. The first version, Epi Info 1, was originally developed by Jeff Dean while he was in high school. [3] [4] It was an MS-DOS batch file on 5.25" floppy disks and released in 1985. [5]
Kaplan-Meier curve illustrating overall survival based on volume of brain metastases.Elaimy et al. (2011) [6] In its simplest form, the hazard ratio can be interpreted as the chance of an event occurring in the treatment arm divided by the chance of the event occurring in the control arm, or vice versa, of a study.
The graphs below show examples of hypothetical survival functions. The x-axis is time. The y-axis is the proportion of subjects surviving. The graphs show the probability that a subject will survive beyond time t. Four survival functions. For example, for survival function 1, the probability of surviving longer than t = 2 months is 0.37. That ...
A benefit of isotonic regression is that it is not constrained by any functional form, such as the linearity imposed by linear regression, as long as the function is monotonic increasing. Another application is nonmetric multidimensional scaling , [ 1 ] where a low-dimensional embedding for data points is sought such that order of distances ...