Search results
Results From The WOW.Com Content Network
For example, take n = 71. Then n − 1 = 70 and the prime factors of 70 are 2, 5 and 7.We randomly select an a=17 < n.Now we compute: (). For all integers a it is known that
A primality test is an algorithm for determining whether an input number is prime.Among other fields of mathematics, it is used for cryptography.Unlike integer factorization, primality tests do not generally give prime factors, only stating whether the input number is prime or not.
Fermat's little theorem states that if p is prime and a is not divisible by p, then a p − 1 ≡ 1 ( mod p ) . {\displaystyle a^{p-1}\equiv 1{\pmod {p}}.} If one wants to test whether p is prime, then we can pick random integers a not divisible by p and see whether the congruence holds.
For example, if a = 2 and p = 7, then 2 7 = 128, and 128 − 2 = 126 = 7 × 18 is an integer multiple of 7. If a is not divisible by p, that is, if a is coprime to p, then Fermat's little theorem is equivalent to the statement that a p − 1 − 1 is an integer multiple of p, or in symbols: [1] [2] ().
An odd prime p is a generalized Fermat number if and only if p is congruent to 1 (mod 4). (Here we consider only the case n > 0, so 3 = + is not a counterexample.) An example of a probable prime of this form is 1215 131072 + 242 131072 (found by Kellen Shenton). [16]
Using repeated squaring, the running time of this algorithm is O(k n 3), for an n-digit number, and k is the number of rounds performed; thus this is an efficient, polynomial-time algorithm. FFT-based multiplication, for example the Schönhage–Strassen algorithm, can decrease the running time to O(k n 2 log n log log n) = Õ(k n 2).
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
A prime sieve or prime number sieve is a fast type of algorithm for finding primes. There are many prime sieves. The simple sieve of Eratosthenes (250s BCE), the sieve of Sundaram (1934), the still faster but more complicated sieve of Atkin [1] (2003), sieve of Pritchard (1979), and various wheel sieves [2] are most common.