Search results
Results From The WOW.Com Content Network
Bayesian statistics are based on a different philosophical approach for proof of inference.The mathematical formula for Bayes's theorem is: [|] = [|] [] []The formula is read as the probability of the parameter (or hypothesis =h, as used in the notation on axioms) “given” the data (or empirical observation), where the horizontal bar refers to "given".
Statistics Indonesia (Indonesian: Badan Pusat Statistik, BPS, lit. 'Central Agency of Statistics'), is a non-departmental government institute of Indonesia that is responsible for conducting statistical surveys. Its main customer is the government, but statistical data is also available to the public.
Maximum likelihood estimation is a generic technique for estimating the unknown parameters in a statistical model by constructing a log-likelihood function corresponding to the joint distribution of the data, then maximizing this function over all possible parameter values. In order to apply this method, we have to make an assumption about the ...
Let X 1, X 2, ..., X n be independent, identically distributed normal random variables with mean μ and variance σ 2.. Then with respect to the parameter μ, one can show that ^ =, the sample mean, is a complete and sufficient statistic – it is all the information one can derive to estimate μ, and no more – and
The law of truly large numbers (a statistical adage), attributed to Persi Diaconis and Frederick Mosteller, states that with a large enough number of independent samples, any highly implausible (i.e. unlikely in any single sample, but with constant probability strictly greater than 0 in any sample) result is likely to be observed. [1]
In statistics, the Lehmann–Scheffé theorem is a prominent statement, tying together the ideas of completeness, sufficiency, uniqueness, and best unbiased estimation. [1] The theorem states that any estimator that is unbiased for a given unknown quantity and that depends on the data only through a complete , sufficient statistic is the unique ...
In statistics, completeness is a property of a statistic computed on a sample dataset in relation to a parametric model of the dataset. It is opposed to the concept of an ancillary statistic. While an ancillary statistic contains no information about the model parameters, a complete statistic contains only information about the parameters, and ...
This category includes articles on basic topics related to mathematical proofs, including terminology and proof techniques.. Related categories: Pages which contain only proofs (of claims made in other articles) should be placed in the subcategory Category:Article proofs.