When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Statistical proof - Wikipedia

    en.wikipedia.org/wiki/Statistical_proof

    Bayesian statistics are based on a different philosophical approach for proof of inference.The mathematical formula for Bayes's theorem is: [|] = [|] [] []The formula is read as the probability of the parameter (or hypothesis =h, as used in the notation on axioms) “given” the data (or empirical observation), where the horizontal bar refers to "given".

  3. Statistics Indonesia - Wikipedia

    en.wikipedia.org/wiki/Statistics_Indonesia

    Statistics Indonesia (Indonesian: Badan Pusat Statistik, BPS, lit. 'Central Agency of Statistics'), is a non-departmental government institute of Indonesia that is responsible for conducting statistical surveys. Its main customer is the government, but statistical data is also available to the public.

  4. Proofs involving ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Proofs_involving_ordinary...

    Maximum likelihood estimation is a generic technique for estimating the unknown parameters in a statistical model by constructing a log-likelihood function corresponding to the joint distribution of the data, then maximizing this function over all possible parameter values. In order to apply this method, we have to make an assumption about the ...

  5. Basu's theorem - Wikipedia

    en.wikipedia.org/wiki/Basu's_theorem

    Let X 1, X 2, ..., X n be independent, identically distributed normal random variables with mean μ and variance σ 2.. Then with respect to the parameter μ, one can show that ^ =, the sample mean, is a complete and sufficient statistic – it is all the information one can derive to estimate μ, and no more – and

  6. Law of truly large numbers - Wikipedia

    en.wikipedia.org/wiki/Law_of_truly_large_numbers

    The law of truly large numbers (a statistical adage), attributed to Persi Diaconis and Frederick Mosteller, states that with a large enough number of independent samples, any highly implausible (i.e. unlikely in any single sample, but with constant probability strictly greater than 0 in any sample) result is likely to be observed. [1]

  7. Lehmann–Scheffé theorem - Wikipedia

    en.wikipedia.org/wiki/Lehmann–Scheffé_theorem

    In statistics, the Lehmann–Scheffé theorem is a prominent statement, tying together the ideas of completeness, sufficiency, uniqueness, and best unbiased estimation. [1] The theorem states that any estimator that is unbiased for a given unknown quantity and that depends on the data only through a complete , sufficient statistic is the unique ...

  8. Completeness (statistics) - Wikipedia

    en.wikipedia.org/wiki/Completeness_(statistics)

    In statistics, completeness is a property of a statistic computed on a sample dataset in relation to a parametric model of the dataset. It is opposed to the concept of an ancillary statistic. While an ancillary statistic contains no information about the model parameters, a complete statistic contains only information about the parameters, and ...

  9. Category:Mathematical proofs - Wikipedia

    en.wikipedia.org/wiki/Category:Mathematical_proofs

    This category includes articles on basic topics related to mathematical proofs, including terminology and proof techniques.. Related categories: Pages which contain only proofs (of claims made in other articles) should be placed in the subcategory Category:Article proofs.