Search results
Results From The WOW.Com Content Network
Modern Quantum Mechanics, often called Sakurai or Sakurai and Napolitano, is a standard graduate-level quantum mechanics textbook written originally by J. J. Sakurai and edited by San Fu Tuan in 1985, with later editions coauthored by Jim Napolitano.
The third volume was left unfinished due to Sakurai's sudden death in 1982, but was later edited and completed with the help of his wife, Noriko Sakurai, and colleague San Fu Tuan. [5] Modern Quantum Mechanics is probably his most well known book and is still widely used for graduate studies today.
Introduction to Quantum Mechanics: Schrödinger Equation and Path Integral (2nd ed.). World Scientific. ISBN 9789814397735. Sakurai, J. J.; Napolitano, Jim (2017). Modern Quantum Mechanics (2nd ed.). Cambridge University Press. ISBN 978-1-108-42241-3. Leonard I. Schiff (1968) Quantum Mechanics McGraw-Hill Education
The book has also been suggested as a complement to simplified introductory books in quantum mechanics. [ 3 ] Experimental physicist and 2022 Nobel laureate in Physics Alain Aspect , has frequently mentioned that the book was a revelation early in his career, helping him better understand the research papers of quantum mechanics and the work of ...
Quantum mechanics is a fundamental theory that describes the behavior of nature at and below the scale of atoms. [2]: 1.1 It is the foundation of all quantum physics, which includes quantum chemistry, quantum field theory, quantum technology, and quantum information science. Quantum mechanics can describe many systems that classical physics cannot.
The path integral formulation is a description in quantum mechanics that generalizes the stationary action principle of classical mechanics.It replaces the classical notion of a single, unique classical trajectory for a system with a sum, or functional integral, over an infinity of quantum-mechanically possible trajectories to compute a quantum amplitude.
For example, up to first-order perturbations, the Bohr model and quantum mechanics make the same predictions for the spectral line splitting in the Stark effect. At higher-order perturbations, however, the Bohr model and quantum mechanics differ, and measurements of the Stark effect under high field strengths helped confirm the correctness of ...
The idea that quantum states are vectors in an abstract vector space is completely general in all aspects of quantum mechanics and quantum field theory, whereas the idea that quantum states are complex-valued "wave" functions of space is only true in certain situations. The time parameter is often suppressed, and will be in the following.