Ads
related to: pre image of a function examples geometry questions and solutions answer
Search results
Results From The WOW.Com Content Network
The image of the function is the set of all output values it may produce, that is, the image of . The preimage of f {\displaystyle f} , that is, the preimage of Y {\displaystyle Y} under f {\displaystyle f} , always equals X {\displaystyle X} (the domain of f {\displaystyle f} ); therefore, the former notion is rarely used.
A rectangular grid (top) and its image under a conformal map f (bottom). It is seen that f maps pairs of lines intersecting at 90° to pairs of curves still intersecting at 90°. A conformal map is a function which preserves angles locally. In the most common case the function has a domain and range in the complex plane. More formally, a map,
Continuous functions are Borel functions but not all Borel functions are continuous. However, a measurable function is nearly a continuous function; see Luzin's theorem . If a Borel function happens to be a section of a map Y → π X , {\displaystyle Y\xrightarrow {~\pi ~} X,} it is called a Borel section .
In differential geometry, the inverse function theorem is used to show that the pre-image of a regular value under a smooth map is a manifold. [10] Indeed, let f : U → R r {\displaystyle f:U\to \mathbb {R} ^{r}} be such a smooth map from an open subset of R n {\displaystyle \mathbb {R} ^{n}} (since the result is local, there is no loss of ...
A function : is monotone in this topological sense if and only if it is non-increasing or non-decreasing, which is the usual meaning of "monotone function" in real analysis. A function between topological spaces is (sometimes) called a proper map if every fiber is a compact subspace of its domain. However, many authors use other non-equivalent ...
Kronecker delta function: is a function of two variables, usually integers, which is 1 if they are equal, and 0 otherwise. Minkowski's question mark function: Derivatives vanish on the rationals. Weierstrass function: is an example of continuous function that is nowhere differentiable