Ads
related to: pipe flow calculator slope rating system
Search results
Results From The WOW.Com Content Network
The Hazen–Williams equation is an empirical relationship that relates the flow of water in a pipe with the physical properties of the pipe and the pressure drop caused by friction. It is used in the design of water pipe systems [1] such as fire sprinkler systems, [2] water supply networks, and irrigation systems.
The Reynolds number Re is taken to be Re = V D / ν, where V is the mean velocity of fluid flow, D is the pipe diameter, and where ν is the kinematic viscosity μ / ρ, with μ the fluid's Dynamic viscosity, and ρ the fluid's density. The pipe's relative roughness ε / D, where ε is the pipe's effective roughness height and D the pipe ...
The flow rate can be converted to a mean flow velocity V by dividing by the wetted area of the flow (which equals the cross-sectional area of the pipe if the pipe is full of fluid). Pressure has dimensions of energy per unit volume, therefore the pressure drop between two points must be proportional to the dynamic pressure q.
It uses a combination of the energy, momentum, and continuity equations to determine water depth with a given a friction slope (), channel slope (), channel geometry, and also a given flow rate. In practice, this technique is widely used through the computer program HEC-RAS , developed by the US Army Corps of Engineers Hydrologic Engineering ...
This can be used to calculate mean values (expectations) of the flow rates, head losses or any other variables of interest in the pipe network. This analysis has been extended using a reduced-parameter entropic formulation, which ensures consistency of the analysis regardless of the graphical representation of the network. [ 3 ]
Under turbulent flow, the friction loss is found to be roughly proportional to the square of the flow velocity and inversely proportional to the pipe diameter, that is, the friction loss follows the phenomenological Darcy–Weisbach equation in which the hydraulic slope S can be expressed [9]