When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rotation of axes in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_of_axes_in_two...

    In mathematics, a rotation of axes in two dimensions is a mapping from an xy-Cartesian coordinate system to an x′y′-Cartesian coordinate system in which the origin is kept fixed and the x′ and y′ axes are obtained by rotating the x and y axes counterclockwise through an angle .

  3. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    More specifically, they can be characterized as orthogonal matrices with determinant 1; that is, a square matrix R is a rotation matrix if and only if R T = R −1 and det R = 1. The set of all orthogonal matrices of size n with determinant +1 is a representation of a group known as the special orthogonal group SO( n ) , one example of which is ...

  4. Axis–angle representation - Wikipedia

    en.wikipedia.org/wiki/Axis–angle_representation

    The angle θ and axis unit vector e define a rotation, concisely represented by the rotation vector θe.. In mathematics, the axis–angle representation parameterizes a rotation in a three-dimensional Euclidean space by two quantities: a unit vector e indicating the direction of an axis of rotation, and an angle of rotation θ describing the magnitude and sense (e.g., clockwise) of the ...

  5. Category:Articles with example R code - Wikipedia

    en.wikipedia.org/wiki/Category:Articles_with...

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us

  6. R (programming language) - Wikipedia

    en.wikipedia.org/wiki/R_(programming_language)

    R is a programming language for statistical computing and data visualization. It has been adopted in the fields of data mining, bioinformatics and data analysis. [9] The core R language is augmented by a large number of extension packages, containing reusable code, documentation, and sample data. R software is open-source and free software.

  7. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    A rotation can be represented by a unit-length quaternion q = (w, r →) with scalar (real) part w and vector (imaginary) part r →. The rotation can be applied to a 3D vector v → via the formula = + (+). This requires only 15 multiplications and 15 additions to evaluate (or 18 multiplications and 12 additions if the factor of 2 is done via ...

  8. Euler's rotation theorem - Wikipedia

    en.wikipedia.org/wiki/Euler's_rotation_theorem

    Therefore, another version of Euler's theorem is that for every rotation R, there is a nonzero vector n for which Rn = n; this is exactly the claim that n is an eigenvector of R associated with the eigenvalue 1. Hence it suffices to prove that 1 is an eigenvalue of R; the rotation axis of R will be the line μn, where n is the eigenvector with ...

  9. Conversion between quaternions and Euler angles - Wikipedia

    en.wikipedia.org/wiki/Conversion_between...

    The resulting orientation of Body 3-2-1 sequence (around the capitalized axis in the illustration of Tait–Bryan angles) is equivalent to that of lab 1-2-3 sequence (around the lower-cased axis), where the airplane is rolled first (lab-x axis), and then nosed up around the horizontal lab-y axis, and finally rotated around the vertical lab-z ...