Search results
Results From The WOW.Com Content Network
The values are ordered in a logical way and must be defined for each variable. Domains can be bigger or smaller. The smallest possible domains have those variables that can only have two values, also called binary (or dichotomous) variables. Bigger domains have non-dichotomous variables and the ones with a higher level of measurement.
In statistics, dichotomous data may only exist at first two levels of measurement, namely at the nominal level of measurement (such as "British" vs "American" when measuring nationality) and at the ordinal level of measurement (such as "tall" vs "short", when measuring height). A variable measured dichotomously is called a dummy variable.
If a variable is only referenced by a single identifier, that identifier can simply be called the name of the variable; otherwise, we can speak of it as one of the names of the variable. For instance, in the previous example the identifier "total_count" is the name of the variable in question, and "r" is another name of the same variable.
A categorical variable that can take on exactly two values is termed a binary variable or a dichotomous variable; an important special case is the Bernoulli variable. Categorical variables with more than two possible values are called polytomous variables; categorical variables are often assumed to be polytomous unless otherwise specified.
A variable of this type is called a dummy variable. If the dependent variable is a dummy variable, then logistic regression or probit regression is commonly employed. In the case of regression analysis, a dummy variable can be used to represent subgroups of the sample in a study (e.g. the value 0 corresponding to a constituent of the control ...
The point biserial correlation coefficient (r pb) is a correlation coefficient used when one variable (e.g. Y) is dichotomous; Y can either be "naturally" dichotomous, like whether a coin lands heads or tails, or an artificially dichotomized variable. In most situations it is not advisable to dichotomize variables artificially. [1]
The variable could take on a value of 1 for males and 0 for females (or vice versa). In machine learning this is known as one-hot encoding. Dummy variables are commonly used in regression analysis to represent categorical variables that have more than two levels, such as education level or occupation.
The choice of a variable name should be mnemonic — that is, designed to indicate to the casual observer the intent of its use. One-character variable names should be avoided except for temporary "throwaway" variables. Common names for temporary variables are i, j, k, m, and n for integers; c, d, and e for characters. int i;