Search results
Results From The WOW.Com Content Network
The implicit function theorem of more than two real variables deals with the continuity and differentiability of the function, as follows. [4] Let ϕ ( x 1 , x 2 , …, x n ) be a continuous function with continuous first order partial derivatives, and let ϕ evaluated at a point ( a , b ) = ( a 1 , a 2 , …, a n , b ) be zero:
An example is polynomial regression, which uses a linear predictor function to fit an arbitrary degree polynomial relationship (up to a given order) between two sets of data points (i.e. a single real-valued explanatory variable and a related real-valued dependent variable), by adding multiple explanatory variables corresponding to various ...
In econometrics, the seemingly unrelated regressions (SUR) [1]: 306 [2]: 279 [3]: 332 or seemingly unrelated regression equations (SURE) [4] [5]: 2 model, proposed by Arnold Zellner in (1962), is a generalization of a linear regression model that consists of several regression equations, each having its own dependent variable and potentially ...
Simultaneous equations models are a type of statistical model in which the dependent variables are functions of other dependent variables, rather than just independent variables. [1] This means some of the explanatory variables are jointly determined with the dependent variable, which in economics usually is the consequence of some underlying ...
It is possible to have multiple independent variables or multiple dependent variables. For instance, in multivariable calculus, one often encounters functions of the form z = f(x,y), where z is a dependent variable and x and y are independent variables. [8] Functions with multiple outputs are often referred to as vector-valued functions.
Bivariate regression aims to identify the equation representing the optimal line that defines the relationship between two variables based on a particular data set. This equation is subsequently applied to anticipate values of the dependent variable not present in the initial dataset.
Here the dependent variable (and variable of most interest) was the annual mean sea level at a given location for which a series of yearly values were available. The primary independent variable was "time". Use was made of a "covariate" consisting of yearly values of annual mean atmospheric pressure at sea level.
In mathematics (including combinatorics, linear algebra, and dynamical systems), a linear recurrence with constant coefficients [1]: ch. 17 [2]: ch. 10 (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence.