When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Generalizations of Fibonacci numbers - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of...

    A repfigit, or Keith number, is an integer such that, when its digits start a Fibonacci sequence with that number of digits, the original number is eventually reached. An example is 47, because the Fibonacci sequence starting with 4 and 7 (4, 7, 11, 18, 29, 47) reaches 47. A repfigit can be a tribonacci sequence if there are 3 digits in the ...

  3. Fibonacci coding - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_coding

    The penultimate bit is the most significant bit and the first bit is the least significant bit. Also, leading zeros cannot be omitted as they can be in, for example, decimal numbers. The first few Fibonacci codes are shown below, and also their so-called implied probability, the value for each number that has a minimum-size code in Fibonacci ...

  4. Fibonacci sequence - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_sequence

    This sequence of numbers of parents is the Fibonacci sequence. The number of ancestors at each level, F n, is the number of female ancestors, which is F n−1, plus the number of male ancestors, which is F n−2. [90] [91] This is under the unrealistic assumption that the ancestors at each level are otherwise unrelated.

  5. Fibonacci search technique - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_search_technique

    Let k be defined as an element in F, the array of Fibonacci numbers. n = F m is the array size. If n is not a Fibonacci number, let F m be the smallest number in F that is greater than n. The array of Fibonacci numbers is defined where F k+2 = F k+1 + F k, when k ≥ 0, F 1 = 1, and F 0 = 1. To test whether an item is in the list of ordered ...

  6. Overlapping subproblems - Wikipedia

    en.wikipedia.org/wiki/Overlapping_subproblems

    For example, the problem of computing the Fibonacci sequence exhibits overlapping subproblems. The problem of computing the nth Fibonacci number F(n), can be broken down into the subproblems of computing F(n − 1) and F(n − 2), and then adding the two.

  7. Fibonacci prime - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_prime

    A prime divides if and only if p is congruent to ±1 modulo 5, and p divides + if and only if it is congruent to ±2 modulo 5. (For p = 5, F 5 = 5 so 5 divides F 5) . Fibonacci numbers that have a prime index p do not share any common divisors greater than 1 with the preceding Fibonacci numbers, due to the identity: [6]

  8. Constant-recursive sequence - Wikipedia

    en.wikipedia.org/wiki/Constant-recursive_sequence

    This characterization is exact: every sequence of complex numbers that can be written in the above form is constant-recursive. [20] For example, the Fibonacci number is written in this form using Binet's formula: [21] =,

  9. Zeckendorf's theorem - Wikipedia

    en.wikipedia.org/wiki/Zeckendorf's_theorem

    where F n is the n th Fibonacci number. Such a sum is called the Zeckendorf representation of N. The Fibonacci coding of N can be derived from its Zeckendorf representation. For example, the Zeckendorf representation of 64 is 64 = 55 + 8 + 1. There are other ways of representing 64 as the sum of Fibonacci numbers 64 = 55 + 5 + 3 + 1 64 = 34 ...