Search results
Results From The WOW.Com Content Network
The principal cube root is the cube root with the largest real part. In the case of negative real numbers, the largest real part is shared by the two nonreal cube roots, and the principal cube root is the one with positive imaginary part. So, for negative real numbers, the real cube root is not the principal cube root. For positive real numbers ...
A root of degree 2 is called a square root and a root of degree 3, a cube root. Roots of higher degree are referred by using ordinal numbers, as in fourth root, twentieth root, etc. The computation of an n th root is a root extraction. For example, 3 is a square root of 9, since 3 2 = 9, and −3 is also a square root of 9, since (−3) 2 = 9.
The other roots of the equation are obtained either by changing of cube root or, equivalently, by multiplying the cube root by a primitive cube root of unity, that is . This formula for the roots is always correct except when p = q = 0 , with the proviso that if p = 0 , the square root is chosen so that C ≠ 0 .
The Kissing Number Problem. A broad category of problems in math are called the Sphere Packing Problems. They range from pure math to practical applications, generally putting math terminology to ...
In mathematics, a cubic function is a function of the form () = + + +, that is, a polynomial function of degree three. In many texts, the coefficients a , b , c , and d are supposed to be real numbers , and the function is considered as a real function that maps real numbers to real numbers or as a complex function that maps complex numbers to ...
A related question is whether it can be expressed using cube roots. The following two approaches can be used, but both result in an expression that involves the cube root of a complex number . Using the triple-angle identity, we can identify sin ( 1 ∘ ) {\displaystyle \sin(1^{\circ })} as a root of a cubic polynomial: sin ( 3 ∘ ...
Adjoining a root of x 3 + x 2 − 2x − 1 to Q yields a cyclic cubic field, and hence a totally real cubic field. It has the smallest discriminant of all totally real cubic fields, namely 49. [4] The field obtained by adjoining to Q a root of x 3 + x 2 − 3x − 1 is an example of a totally real cubic field that is not cyclic. Its ...
In the case of two nested square roots, the following theorem completely solves the problem of denesting. [2]If a and c are rational numbers and c is not the square of a rational number, there are two rational numbers x and y such that + = if and only if is the square of a rational number d.