Ads
related to: spring math color worksheets 7th grade text structure
Search results
Results From The WOW.Com Content Network
The graph coloring game is a mathematical game related to graph theory. Coloring game problems arose as game-theoretic versions of well-known graph coloring problems. In a coloring game, two players use a given set of colors to construct a coloring of a graph, following specific rules depending on the game we consider.
Given a graph G and given a set L(v) of colors for each vertex v (called a list), a list coloring is a choice function that maps every vertex v to a color in the list L(v). As with graph coloring, a list coloring is generally assumed to be proper , meaning no two adjacent vertices receive the same color.
For instance, giving each vertex a distinct color would be equitable, but would typically use many more colors than are necessary in an optimal equitable coloring. An equivalent way of defining an equitable coloring is that it is an embedding of the given graph as a subgraph of a Turán graph with the same set of vertices
Seventh grade (also 7th Grade or Grade 7) is the seventh year of formal or compulsory education. The seventh grade is typically the first or second year of middle school. In the United States, kids in seventh grade are usually around 12–13 years old. Different terms and numbers are used in other parts of the world.
An edge coloring of is called a -rainbow coloring if for every set of vertices of , there is a rainbow tree in containing the vertices of . The k {\displaystyle k} -rainbow index rx k ( G ) {\displaystyle {\text{rx}}_{k}(G)} of G {\displaystyle G} is the minimum number of colors needed in a k {\displaystyle k} -rainbow coloring of G ...
Six dots are drawn.Each dot is connected to every other dot by a line ().Two players take turns coloring any uncolored lines. One player colors in one color, and the other colors in another color, with each player trying to avoid the creation of a triangle made solely of their color (only triangles with the dots as all corners count; intersections of lines are not relevant); the player who ...