Search results
Results From The WOW.Com Content Network
The most common Lewis bases are anions. The strength of Lewis basicity correlates with the pK a of the parent acid: acids with high pK a 's give good Lewis bases. As usual, a weaker acid has a stronger conjugate base. Examples of Lewis bases based on the general definition of electron pair donor include: simple anions, such as H − and F −
G. N. Lewis realized that water, ammonia, and other bases can form a bond with a proton due to the unshared pair of electrons that the bases possess. [3] In the Lewis theory , a base is an electron pair donor which can share a pair of electrons with an electron acceptor which is described as a Lewis acid. [ 4 ]
Bases are defined by the Brønsted–Lowry theory as chemical substances that can accept a proton, i.e., a hydrogen ion. In water this is equivalent to a hydronium ion). The Lewis theory instead defines a Base as an electron-pair donor. The Lewis definition is broader — all Brønsted–Lowry bases are also Lewis bases.
HSAB is an acronym for "hard and soft (Lewis) acids and bases".HSAB is widely used in chemistry for explaining the stability of compounds, reaction mechanisms and pathways. It assigns the terms 'hard' or 'soft', and 'acid' or 'base' to chemical species.
In chemistry a donor number (DN) is a quantitative measure of Lewis basicity.A donor number is defined as the negative enthalpy value for the 1:1 adduct formation between a Lewis base and the standard Lewis acid SbCl 5 (antimony pentachloride), in dilute solution in the noncoordinating solvent 1,2-dichloroethane with a zero DN.
In the same year that Brønsted and Lowry published their theory, G. N. Lewis created an alternative theory of acid–base reactions. The Lewis theory is based on electronic structure. A Lewis base is a compound that can give an electron pair to a Lewis acid, a compound that can accept an electron pair.
In chemistry, the ECW model is a semi-quantitative model that describes and predicts the strength of Lewis acid–Lewis base interactions. Many chemical reactions can be described as acid–base reactions, so models for such interactions are of potentially broad interest.
An organic base is an organic compound which acts as a base. Organic bases are usually, but not always, proton acceptors. They usually contain nitrogen atoms, which can easily be protonated. For example, amines or nitrogen-containing heterocyclic compounds have a lone pair of electrons on the nitrogen atom and can thus act as proton acceptors. [1]