When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    The first equation shows that, after one second, an object will have fallen a distance of 1/2 × 9.8 × 1 2 = 4.9 m. After two seconds it will have fallen 1/2 × 9.8 × 2 2 = 19.6 m; and so on. On the other hand, the penultimate equation becomes grossly inaccurate at great distances.

  3. Inertia - Wikipedia

    en.wikipedia.org/wiki/Inertia

    Inertia is the natural tendency of objects in motion to stay in motion and objects at rest to stay at rest, unless a force causes the velocity to change. It is one of the fundamental principles in classical physics, and described by Isaac Newton in his first law of motion (also known as The Principle of Inertia). [1]

  4. Circular motion - Wikipedia

    en.wikipedia.org/wiki/Circular_motion

    The momentum of the body is 1 kg·m·s −1. The moment of inertia is 1 kg·m 2. The angular momentum is 1 kg·m 2 ·s −1. The kinetic energy is 0.5 joule. The circumference of the orbit is 2 π (~6.283) metres. The period of the motion is 2 π seconds. The frequency is (2 π) −1 hertz.

  5. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    where F is the gravitational force acting between two objects, m 1 and m 2 are the masses of the objects, r is the distance between the centers of their masses, and G is the gravitational constant. The first test of Newton's law of gravitation between masses in the laboratory was the Cavendish experiment conducted by the British scientist Henry ...

  6. Free-fall time - Wikipedia

    en.wikipedia.org/wiki/Free-fall_time

    The free-fall time is the characteristic time that would take a body to collapse under its own gravitational attraction, if no other forces existed to oppose the collapse.. As such, it plays a fundamental role in setting the timescale for a wide variety of astrophysical processes—from star formation to helioseismology to supernovae—in which gravity plays a dominant ro

  7. Mass - Wikipedia

    en.wikipedia.org/wiki/Mass

    If a first body of mass m A is placed at a distance r (center of mass to center of mass) from a second body of mass m B, each body is subject to an attractive force F g = Gm A m B /r 2, where G = 6.67 × 10 −11 N⋅kg −2 ⋅m 2 is the "universal gravitational constant". This is sometimes referred to as gravitational mass.

  8. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    If one mass is much larger than the other, it is convenient to take it as observational reference and define it as source of a gravitational field of magnitude and orientation given by: [5] g = − G M r 2 r ^ {\displaystyle \mathbf {g} =-{GM \over r^{2}}\mathbf {\hat {r}} }

  9. Free fall - Wikipedia

    en.wikipedia.org/wiki/Free_fall

    Near the surface of the Earth, an object in free fall in a vacuum will accelerate at approximately 9.8 m/s 2, independent of its mass. With air resistance acting on an object that has been dropped, the object will eventually reach a terminal velocity, which is around 53 m/s (190 km/h or 118 mph [4]) for a human skydiver.