Search results
Results From The WOW.Com Content Network
In the mathematical field of set theory, the continuum means the real numbers, or the corresponding (infinite) cardinal number, denoted by . [ 1 ] [ 2 ] Georg Cantor proved that the cardinality c {\displaystyle {\mathfrak {c}}} is larger than the smallest infinity, namely, ℵ 0 {\displaystyle \aleph _{0}} .
Linear continuum, any ordered set that shares certain properties of the real line; Continuum (topology), a nonempty compact connected metric space (sometimes a Hausdorff space) Continuum hypothesis, a conjecture of Georg Cantor that there is no cardinal number between that of countably infinite sets and the cardinality of the set of all real ...
In set theory, the cardinality of the continuum is the cardinality or "size" of the set of real numbers, sometimes called the continuum. It is an infinite cardinal ...
Continuum theory is the branch of topology devoted to the study of continua. These objects arise frequently in nearly all areas of topology and analysis , and their properties are strong enough to yield many 'geometric' features.
Explicitly including the definition of the limit of a function, we obtain a self-contained definition: Given a function : as above and an element of the domain , is said to be continuous at the point when the following holds: For any positive real number >, however small, there exists some positive real number > such that for all in the domain ...
Cantor's diagonal argument shows that is strictly greater than , but it does not specify whether it is the least cardinal greater than (that is, ).Indeed the assumption that = is the well-known Continuum Hypothesis, which was shown to be consistent with the standard ZFC axioms for set theory by Kurt Gödel and to be independent of it by Paul Cohen.
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...
The continuum hypothesis was advanced by Georg Cantor in 1878, [1] and establishing its truth or falsehood is the first of Hilbert's 23 problems presented in 1900. The answer to this problem is independent of ZFC, so that either the continuum hypothesis or its negation can be added as an axiom to ZFC set theory, with the resulting theory being ...